Math, asked by GMC, 1 year ago

if Pth term is p and Qth term is q then sum of sequenceof nth term is?

Answers

Answered by cristal
2
let a be the first term and d be the common difference of given AP then
     pth term = q
     a+(p-1)d=q_______________1
     
     qth term=p
     a+(q-1)d=p__________________2

subtracting equ 2 from 1
    (p-q)d=(q-p)
            d= -1
putting d = -1 in equ 1 , we get
       a+(p-1)-1 =q
                  a   = (p+q-1)

 nth term = a+(n-1)d
                 =(p+q-1)+(n-1)
×(-1)
                 =(p+q-n)



Answered by Anonymous
1

{\green {\boxed {\mathtt {✓verified\:answer}}}}

let \: a \: be \: the \: first \: term \: and \: d \: be \: the \: common \: difference \: of \: the \: nth \: term \: of \: ap \\ t _{p} = a + (p - 1)d \:  \: and \: t _{q}  = a + (q - 1)d \\ now \: t _{p } = q \: and \: t _{q} = p \\  \therefore \: a + (p - 1)d = q \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ... .(1) \\ and \: a + (q - 1)d = p \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: .. ..  (2) \\  \\  \\  on \: subtracting \: (1)from(2) \: we \: get \\ (q - p)d = (p - q) \implies \: d =  - 1 \\ putting \: d =  - 1 \: in \: (1) \: we \: get \: a = (p + q  - 1) \\  \therefore \: nth \: term \:  = a(n - 1)d = (p + q - 1) + (n - 1)( - 1) = (p + q - n) \\  \\ hence \: nth \: term \:  = (p + q - n)

{\huge{\underline{\underline{\underline{\orange{\mathtt{❢◥ ▬▬▬▬▬▬ ◆ ▬▬▬▬▬▬ ◤❢}}}}}}}

Similar questions