If pth term of an A. P. is 1/q and qth term is 1/p, prove that the sum of the first pq terms is 1/2(pq+1)
Answers
Step-by-step explanation:
Follow the attachment for explanation.
GIVEN:-
Ap = 1/q
Aq = 1/p
TO PROVE:-
Spq = 1/2(pq + 1 )
PROOF:-
Aq = a + (n-1)×d
1/p = a + (q-1)×d. {as Aq = 1/p} ----(1)
Ap = a + (n - 1)×d
1/q = a + (p-1)×d. {asAp = 1/q}. ------(2)
SUBTRACT EQUATION (1) FROM (2)
1/q = a + (p-1)×d
1/p = a + (q-1)×d
- - -
____________
1/q - 1/p = 0 + d{p-1-q+1}
p-q/pq = d{p-q}
1/pq = d
SUBSTITUTE VALUE OF d IN EQUATION (2)
1/q = a + (p-1)× 1/pq
1/q = a + p/pq -1/pq
1/q = a + 1/q - 1/pq
1/q - 1/q + 1/pq = a
1/pq = a
Sn = n/2 {2a + (n-1)×d}
Spq = pq/2{2a + (pq-1)×d}
substitute Value of a and d in above equation
Spq ko = pq/2 {2 × 1/pq + (pq-1)×1/pq}
Spq = pq/2 {2/pq + pq/pq - 1/pq }
Spq = pq/2{2/pq + 1 - 1/pq }
Spq = pq/2 {2/pq - 1/pq + 1}
Spq = pq/2{1/pq + 1}
Spq = pq/2{1 + pq/pq}
Spq = pq/2 {1 + pq}/pq
Spq = 1/2{1 + pq}
HENCE PROVED
_____________________________________