Math, asked by rintu7533, 1 year ago

If pth term of an Ap is q and the qth term is p than show that rth term p+q-r

Answers

Answered by bishtdikshantdp2x1gj
9
ap = a + (p-1)d 
q = a + pd -d ...........1

aq = a + (q-1)d
p = a + qd - d............2

subtract 2 from 1 we get
q - p = a + pd -d - a - qd+ d
q - p = pd - qd
-1(p - q) = d(p - q)
d = -1

put value of d in 1 equation
q = a - p +1
a = p + q - 1

ar = a+ (r - 1) d
put value of a and d 
    = p + q - 1 - r +1
    = p + q - r
Answered by Anonymous
0

{\green {\boxed {\mathtt {✓verified\:answer}}}}

let \: a \: be \: the \: first \: term \: and \: d \: be \: the \: common \: difference \: of \: the \: nth \: term \: of \: ap \\ t _{p} = a + (p - 1)d \:  \: and \: t _{q}  = a + (q - 1)d \\ now \: t _{p } = q \: and \: t _{q} = p \\  \therefore \: a + (p - 1)d = q \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ... .(1) \\ and \: a + (q - 1)d = p \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: .. ..  (2) \\  \\  \\  on \: subtracting \: (1)from(2) \: we \: get \\ (q - p)d = (p - q) \implies \: d =  - 1 \\ putting \: d =  - 1 \: in \: (1) \: we \: get \: a = (p + q  - 1) \\  \therefore \: nth \: term \:  = a(n - 1)d = (p + q - 1) + (n - 1)( - 1) = (p + q - n) \\  \\ hence \: nth \: term \:  = (p + q - n)

{\huge{\underline{\underline{\underline{\orange{\mathtt{here\:is\:your\:answer....}}}}}}}......

Similar questions