Math, asked by himanshu7187, 7 months ago

If Q(0, 1) is equidistant from P(5,-3) and R(x,6), find the value of x and also find the distance of QR and PR.​

Answers

Answered by BloomingBud
46

Given:

Points Q(0,1) is equidistant from P(5,-3) and R(x,6)

So,

∴ QP = QR

⇒ QR² = QR²  [By squaring both the sides]

⇒ (5 - 0)² + (-3 - 1) = (x - 0)² + (6 - 1)²

[As the distance formula = \sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}} ]

⇒ 5² + 4² = x² + 5²

⇒ 25 + 16  = x² + 25

⇒ x² = 16

⇒ x = ±4

Thus,

The coordinates of R are (4,6) and (-4,6)

  • CASE 1

QR = Distance between Q(0,1) and R(4,6)

      = \sqrt{ (4-0)^{2} + (6-1)^{2} }

      = \sqrt{4^{2}+5^{2}}

      = \sqrt{41}\ units

And

PR = Distance between P(5,-3) and R(4,6)

    =  \sqrt{ (4-5)^{2} + (6+3)^{2} }

    = \sqrt{ (-1)^{2} + (9)^{2} }

    = \sqrt{82}\ units

  • CASE 2

When the coordinates or R = (-4,6)

In this case,

QR = Distance between Q(0,1) and R(-4,6)

     = \sqrt{(-4-0)^{2}+(6-1)^{2}}

     = \sqrt{(-4)^{2}+(5)^{2}}

     = \sqrt{41}\ units

PR = Distance between P(5,-3) and R(-4,6)

     = \sqrt{(-4-5)^{2}+(6+3)^{2}}

     = \sqrt{(-9)^{2}+(9)^{2}}

     = \sqrt{162} = 9\sqrt{2}\ units

   

Similar questions