Math, asked by TehseenAbbasJaffery, 5 months ago

If q=√2+√3, find the values of q-1/q and q2+1/q2​

Answers

Answered by Bidikha
7

Given -

q =  \sqrt{2}  +  \sqrt{3}

To find -

1)q -  \frac{1}{q}

2) {q}^{2}  +  \frac{1}{ {q}^{2} }

Solution -

q =  \sqrt{2}  +  \sqrt{3}

 \frac{1}{q}  =  \frac{1}{ \sqrt{2} +  \sqrt{3}  }

Rationalising the denominator we will get -

 \frac{1}{q}  =  \frac{ \sqrt{2} -  \sqrt{3}  }{( \sqrt{2} +  \sqrt{3} )( \sqrt{2} -  \sqrt{3}  ) }

 \frac{1}{q}  =  \frac{ \sqrt{2}  -  \sqrt{3} }{ {( \sqrt{2}) }^{2}  -  { (\sqrt{3}) }^{2} }

 \frac{1}{q}  =  \frac{ \sqrt{2} -  \sqrt{3}  }{2 - 3}

 \frac{1}{q}  =  \frac{ \sqrt{2}  -  \sqrt{3} }{ - 1}

 \frac{1}{q}  =  -  \sqrt{2 }  +  \sqrt{3}

Now,

 = q -  \frac{1}{q}

Putting the values we will get -

 =    \sqrt{2}  +  \sqrt{3}  - ( -  \sqrt{2}  +  \sqrt{3} )

 =  \sqrt{2}  +  \sqrt{3}  +  \sqrt{2}  -  \sqrt{3}

 = 2 \sqrt{2}

\boxed{\bf \: \therefore \: The \: value \: of \: q -  \frac{1}{q}  \: is \: 2 \sqrt{2} }

Again,

 =  {q}^{2}  +  \frac{1}{ {q}^{2} }

Putting the values we will get -

 =  {( \sqrt{2} +  \sqrt{3}  )}^{2}  +  {( \sqrt{3} -  \sqrt{2})  }^{2}

 =  ( { \sqrt{2} )}^{2}  +(  { \sqrt{3}) }^{2}  + 2 \times  \sqrt{2}  \times  \sqrt{6}  +  {( \sqrt{3}) }^{2}  +  {( \sqrt{2}) }^{2}  - 2 \times  \sqrt{3 }  \times  \sqrt{2}

 = 2 + 3 + 2 \sqrt{6}  + 3 + 2 - 2 \sqrt{6}

 = 2 + 3 + 3 + 2

 = 5 + 5

 = 10

\boxed{\bf \: \therefore \: The \: value \: of \:  {q}^{2}  +  \frac{1}{ {q}^{2} } is \: 10}

Similar questions