If q cos theta = p find tan theta - cot theta in terms of p and q.
Answers
Answered by
7
Answer:
If q cos x = p, find the value of tan x - cot x, in terms of p and p.
cos x = p/q, so sin x = (q^2-p^2)^0.5/q. Then tan x = [(q^2-p^2)^0.5/q]/[p/q] =
[(q^2-p^2)^0.5]/p and cot x = p/[(q^2-p^2)^0.5].
Hence tan x - cot x =
[(q^2-p^2)^0.5]/p - p/[(q^2-p^2)^0.5]
= [(q^2-p^2) - p^2]/p[(q^2-p^2)^0.5]
= [q^2–2p^2]/p[(q^2-p^2)^0.5]
= [q^2–2p^2](q^2+p^2)^0.5]/p[(q^2-p^2)^0.5](q^2+p^2)^0.5]
= [q^2–2p^2](q^2+p^2)^0.5]/p[(q^2-p^2)]
Answered by
6
Answer:
q² - 2p²/√(p²q² - p⁴)
Step-by-step explanation:
Cosθ = p/q
Sinθ = √1 - Cos²θ = √1 - p²/q² = 1/q[√q² - p²]
Tanθ = Sinθ/Cosθ = √q² - p² / p.
Cotθ = p/√q² - p²
Tanθ - Cotθ = √q² - p² / p - p/√q² - p²
= (√q² - p² )² - p² / p(√q² - p²)
= q² - 2p²/√(p²q² - p⁴)
Similar questions