Math, asked by ayrok777, 1 year ago

if q(x)=x^3+3x^2+3x+1,find q(-2)+q(-3)+q(1/2)

Answers

Answered by PARI1111111
32
hope it helps u...........
Attachments:
Answered by swethassynergy
9

The answer is q(-2)+q(-3)+q(\frac{1}{2}) =\frac{-45}{8}

Step-by-step explanation:

Given: q(x)=x^3+3x^2+3x+1

To find: q(-2)+q(-3)+q(\frac{1}{2})

Solution:

First finding the values of q(-2), q(-3), and q(\frac{1}{2})

  • q(-2) =(-2)^3+3(-2)^2+3(-2)+1

q(-2) =(-8)+3(4)-6+1

q(-2) =-8+12-5

q(-2) =-13+12

q(-2) =-1

  • q(-3) =(-3)^3+3(-3)^2+3(-3)+1

q(-3) =(-27)+3(9)-9+1

q(-3) =-27+27-8

q(-3) =-8

  • q(\frac{1}{2}) =(\frac{1}{2})^3+3(\frac{1}{2})^2+3(\frac{1}{2})+1

q(\frac{1}{2}) =(\frac{1}{8})+3(\frac{1}{4})+(\frac{3}{2})+1

q(\frac{1}{2}) =\frac{1}{8}+\frac{3}{4}+\frac{3}{2}+1

q(\frac{1}{2}) =\frac{1+6+12+8}{8}

q(\frac{1}{2}) =\frac{27}{8}

  • Now adding the values

q(-2)+q(-3)+q(\frac{1}{2}) =-1 -8 +\frac{27}{8}

=-9 +\frac{27}{8}

=\frac{-72 +27}{8}

=\frac{-45}{8}

  • Thus q(-2)+q(-3)+q(\frac{1}{2}) =\frac{-45}{8}
Similar questions