Math, asked by kirananand, 1 year ago

If QT ⊥​ PR, ∠​TQR = 40° and ∠​SPR = 30°, Find x, y.​

Answers

Answered by GodBrainly
80
\textbf{\huge{\underline{Solution:-}}}

____________________________________

In Δ QTR,
∠ TQR + ∠ QRT + ∠ QTR = 180°
⇒ 40° + y + 90° = 180°
⇒ y = 180° - 130°
⇒ y = 50°

∠ QSP = ∠ SPR + ∠ SRP

Reason : Exterior angle = sum of interior angles

⇒ x = 30° + y
⇒ x = 30° + 50°
⇒ x = 80°

So, ∠ x = 80° and ∠ y = 50°.

____________________________________

kirananand: thank u so much
Answered by CopyThat
6

Answer:

  • x° = 50°
  • y° = 80°

Step-by-step explanation:

Given

  • QT⊥PR
  • ∠TQR = 40°
  • ∠SPR = 30°

To find

Solution

x° :-

  • In ΔTQR,
  • 90° + 40° + x° = 180°

(Angle sum property)

  • 130° + x° = 180°
  • x° = 180° - 130°
  • x° = 50°

y° :-

  • y° = ∠SPR + x°

(Exterior angle property)

  • y° = 30° + 50
  • y° = 80°

Hence, the value of x and y are 50° and 80° respectively.

Attachments:
Similar questions