If QT ⊥ PR, ∠TQR = 40° and ∠SPR = 30°, Find x, y.
Answers
Answered by
80
____________________________________
In Δ QTR,
∠ TQR + ∠ QRT + ∠ QTR = 180°
⇒ 40° + y + 90° = 180°
⇒ y = 180° - 130°
⇒ y = 50°
∠ QSP = ∠ SPR + ∠ SRP
Reason : Exterior angle = sum of interior angles
⇒ x = 30° + y
⇒ x = 30° + 50°
⇒ x = 80°
So, ∠ x = 80° and ∠ y = 50°.
____________________________________
kirananand:
thank u so much
Answered by
6
Answer:
- x° = 50°
- y° = 80°
Step-by-step explanation:
Given
- QT⊥PR
- ∠TQR = 40°
- ∠SPR = 30°
To find
- x°
- y°
Solution
x° :-
- In ΔTQR,
- 90° + 40° + x° = 180°
(Angle sum property)
- 130° + x° = 180°
- x° = 180° - 130°
- x° = 50°
y° :-
- y° = ∠SPR + x°
(Exterior angle property)
- y° = 30° + 50
- y° = 80°
Hence, the value of x and y are 50° and 80° respectively.
Attachments:
Similar questions