Math, asked by sweetyvigil, 4 months ago

if r=1,then the sum of first n terms of GP is
a) a(r^n-1)/r-1
b) ar^n-1
c) a(1-r^n)/1-r
d) na

Answers

Answered by BrainlyPopularman
7

GIVEN :

• r = 1 for a G.P.

TO FIND :

Sum of n term of G.P. = ?

SOLUTION :

• We know that –

• Sum of n term of G.P. –

  \\ \implies\large { \boxed{\bf S_n =  \dfrac{a( {r}^{n} - 1)}{(r - 1)}}} \\

• Here –

  \\ \:  \: { \huge{.}} \:  \: \bf a = first \:  \: term \\

  \\ \:  \: { \huge{.}} \:  \: \bf r= common \:  \: ratio \\

▪︎ Now let's put r=1 :

  \\ \implies \bf S_n =  \dfrac{a( {(1)}^{n} - 1)}{(1 - 1)} \\

  \\ \implies \bf S_n =  \dfrac{a(1 - 1)}{(1 - 1)} \\

  \\ \implies \bf S_n =  \dfrac{0}{0} \\

• It's an undefined form. So , Let's use limit property –

  \\ \implies\bf S_n =  \lim_{r \to1}\dfrac{a( {r}^{n} - 1)}{(r - 1)} \\

• Use L'HOSPITAL rule –

  \\ \implies\bf S_n =  \lim_{r \to1}\dfrac{a( n{r}^{n - 1} )}{(1)} \\

• Now Apply limit –

  \\ \implies\bf S_n =\dfrac{a \{n{(1)}^{n - 1} \}}{(1)} \\

  \\ \implies\bf S_n =a \{n{(1)}^{n - 1} \}\\

  \\ \implies\bf S_n =a \{n\}\\

  \\ \implies \large{ \boxed{\bf S_n =na}}\\

Hence , Option (d) is correct .

Similar questions