Math, asked by rahamanmasurur108, 3 months ago

If r = 2 + 13, then (x+1/x)equals to :​

Answers

Answered by Bhaavig146
0

Answer:

Thanks for asking the question. Here is your answer:

Given in the question,

x+\frac{1}{x} = \sqrt{13}x+

x

1

=

13

and x^{5} + \frac{1}{x^{5}}=?x

5

+

x

5

1

=?

On squaring both sides we get,

(x+\frac{1}{x})^{2} = (\sqrt{13})^{2}(x+

x

1

)

2

=(

13

)

2

or, x^{2} + 2.x.\frac{1}{x} + (\frac{1}{x})^{2} = 13x

2

+2.x.

x

1

+(

x

1

)

2

=13

or, x^{2} + 2+\frac{1}{x^{2} } = 13x

2

+2+

x

2

1

=13

or, x^{2} +\frac{1}{x^{2}}= 13-2=11x

2

+

x

2

1

=13−2=11 ------------------(1)

On cubing both sides of the equation we get,

(x+\frac{1}{x})^{3} = (\sqrt{13} )^{3}(x+

x

1

)

3

=(

13

)

3

or, x^{3} + \frac{1}{x^{3} }+ 3.x.\frac{1}{x}(x+\frac{1}{x} )= 13\sqrt{13}x

3

+

x

3

1

+3.x.

x

1

(x+

x

1

)=13

13

or, x^{3}+\frac{1}{x^{3} } + 3\sqrt{13}= 13\sqrt{13}x

3

+

x

3

1

+3

13

=13

13

( given in the question, ∵x+\frac{1}{x} = \sqrt{13}x+

x

1

=

13

)

or, x^{3} +\frac{1}{x^{3} }=13\sqrt{13}-3\sqrt{13}x

3

+

x

3

1

=13

13

−3

13

or, x^{3} + \frac{1}{x^{3} }= 10\sqrt{13} ------------------(2)x

3

+

x

3

1

=10

13

−−−−−−−−−−−−−−−−−−(2)

Multiplication from (1) to (2) we get,

x^{2} + \frac{1}{x^{2} } (x^{3} +\frac{1}{x^{3} } )= 11 (10\sqrt{13})x

2

+

x

2

1

(x

3

+

x

3

1

)=11(10

13

)

or, x^{2} (x^{3}+\frac{1}{x}^{3})+\frac{1}{x^{2} }(x^{3}+\frac{1}{x}^{3})x

2

(x

3

+

x

1

3

)+

x

2

1

(x

3

+

x

1

3

) = 110\sqrt{13}110

13

or, x^{5}+\frac{1}{x}+\frac{x^{3} }{x^{2} } + \frac{1}{x^{5} } = 110\sqrt{13}x

5

+

x

1

+

x

2

x

3

+

x

5

1

=110

13

or, x^{5} + \frac{1}{x^{5} }= 110\sqrt{13} - (\frac{1}{x} + x)x

5

+

x

5

1

=110

13

−(

x

1

+x)

or, x^{5} + \frac{1}{x^{5} }= 109\sqrt{13}x

5

+

x

5

1

=109

13

( given in the question, ∵x+\frac{1}{x} = \sqrt{13}x+

x

1

=

13

)

Hence, the solution is x^{5} + \frac{1}{x^{5} }= 109\sqrt{13}x

5

+

x

5

1

=109

13

Similar questions