if r^2=pq show that p:q is the duplicate ratio of (p+r):(q+r)
Answers
Answered by
71
♧♧HERE IS YOUR ANSWER♧♧
Given : r² = pq
Now,
duplicate ratio of (p+r) : (q +r)
= (p+r)² : (q+r)²
= (p² + r² + 2pr) : (q² + r² + 2qr)
= (p² + pq + 2pr) : (q² + pq + 2qr)
= p(p + q + 2r) : q(q + p + 2r)
= p : q
Thus, p:q is the duplicate ratio of (p+r) : (q+r).
(SEE THE ATTACHMENT TOO)
♧♧HOPE THIS HELPS YOU♧♧
Given : r² = pq
Now,
duplicate ratio of (p+r) : (q +r)
= (p+r)² : (q+r)²
= (p² + r² + 2pr) : (q² + r² + 2qr)
= (p² + pq + 2pr) : (q² + pq + 2qr)
= p(p + q + 2r) : q(q + p + 2r)
= p : q
Thus, p:q is the duplicate ratio of (p+r) : (q+r).
(SEE THE ATTACHMENT TOO)
♧♧HOPE THIS HELPS YOU♧♧
Attachments:
Similar questions