Math, asked by 68sarojkumari, 6 hours ago

if r^2 = x^2+y^2 and tan theeta =y/x then prove del theeta/del x = -y/r^2​

Answers

Answered by jaidansari248
0

given :  \\  {r}^{2}  =  {x}^{2}  +  {y}^{2}  \\  \tan( \theta)  =  \frac{y}{x}  \\ to \: proof :  \\  \frac{d\theta}{dx}  =  \frac{ - y}{ {r}^{2} }

prove :  \\  \tan(\theta)  =  \frac{y}{x}  \\  =  > y =  \tan( \theta ) x \\ square \: both \: side \\  {y}^{2}  =  \tan {}^{2} (\theta)  {x}^{2}  \\ so \:  \\  {r}^{2}  =  {x}^{2}  +  {y}^{2}  \\  {r}^{2}  =  {x}^{2}  + \tan {}^{2} (\theta)  {x}^{2} \\  {r}^{2}  =  {x}^{2} (1 + \tan {}^{2} (\theta) ) \\  {r}^{2}  =  {x}^{2}  \sec {}^{2} ( \theta)  \\ r = x \sec( \theta)

Similar questions