Math, asked by Aria48, 5 months ago

If r,h and l be the radius , height and slant height of a cone respectively, then express 'l' in terms of r and h.

(A) √h²–r²

(B) √2h²–r²

(C) √r²–h²

(D) √h²+ r²

if you don't know please don't answer, if anyone gives silly or irrevelent answers I will report them.

Answers

Answered by imcarolina
3

Answer:

C

Step-by-step explanation:

Hope this Helps :))

Answered by varadad25
9

Answer:

\displaystyle{\boxed{\red{\sf\:l\:=\:\sqrt{h^2\:+\:r^2}}}}

Option D)

Step-by-step-explanation:

NOTE: Refer to the attachment for the diagram.

For a cone, we have given that,

\displaystyle{\bullet\:\sf\:r\:=\:radius}

\displaystyle{\bullet\:\sf\:h\:=\:height}

\displaystyle{\bullet\:\sf\:l\:=\:slant\:height}

Now, we know that,

The height of a cone is its perpendicular height, radius is base and the slant height is hypotenuse for a right triangle formed.

\displaystyle{\therefore\:\pink{\sf\:(\:Slant\:height\:)^2\:=\:(\:Radius\:)^2\:+\:(\:Height\:)^2}\sf\:\:\:-\:-\:-\:[\:Pythagoras\:theorem\:]}

\displaystyle{\implies\sf\:l^2\:=\:r^2\:+\:h^2}

\displaystyle{\implies\sf\:\sqrt{l^2}\:=\:\sqrt{\:(\:r^2\:+\:h^2\:)}}

\displaystyle{\implies\sf\:l\:=\:\sqrt{r^2\:+\:h^2}}

\displaystyle{\implies\underline{\boxed{\red{\sf\:l\:=\:\sqrt{h^2\:+\:r^2}}}}}

─────────────────────

Additional Information:

1. Cone:

Any three dimensional figure having two surfaces with base circular in shape is called as cone.

2. Examples of conical objects:

Conical tent, ice - cream cone, sharpened end of pencil, etc. are some examples of conical objects.

3. Important formulae related to cone:

A cone having height \sf\:h, slant height \sf\:l and radius \sf\:r has following formulae:

\displaystyle{\pink{\sf\:1.\:Area\:of\:base\:=\:\pi\:r^{2}}}

\displaystyle{\green{\sf\:2.\:l^{2}\:=\:r^{2}\:+\:h^{2}}\sf\:\:\:\:or\:\:\:\green{\sf\:l\:=\:\sqrt{r^{2}\:+\:h^{2}}}}

\displaystyle{\blue{\sf\:3.\:Curved\:surface\:area\:=\:\pi\:r\:l}}

\displaystyle{\orange{\sf\:4.\:Total\:surface\:area\:=\:\pi\:r\:(\:r\:+\:l\:)}}

\displaystyle{\red{\sf\:5.\:Volume\:=\:\dfrac{1}{3}\:\pi\:r^{2}\:h}}

Attachments:
Similar questions