Math, asked by kajal987632, 7 months ago

If r is the radius of the circle given by

x2 + y2 + z2 + 2ux + 2vy + 2wz + d = 0; lx + my + nz = 0, prove that

(r2 + d)(l2 + m2 + n2) = (mw − nv)2 + (nu − lw)2 + (lv − mu)2

Answers

Answered by rashich1219
9

Given:

If r is the radius of the circle given by ;

x2 + y2 + z2 + 2ux + 2vy + 2wz + d = 0; lx + my + nz = 0

To prove:

prove that -

(r2 + d2)(l2 + m2 + n2) = (mw − nv)2 + (nu − lw)2 + (lv − mu)2

Solution:

According to question;

The center of the sphere S = 0 is C(-u,-v,-w)  and radius

R =\sqrt{(u^{2}  + v^{2} + w^{2} -d)}

Let O be the center of the circle determined by S = 0 and \pi=0.

Then CO is perpendicular to the plane \pi=0.

⇒ d. r of CO are the d. r of the normal to the plane \pi=0

and they are l, m, n.

Therefore the equation of the line CO are

\dfrac{x+u}{l}=\dfrac{y+v}{m}=\dfrac{z+w}{n}   .

The point O is (kl-u, km-v, kn-w) for some k.

Since, O lies on the plane \pi,

l((kl-u)+m(km-v)+n(kn-w)=0\\\\implies,\\ k(l^{2}+m^{2}+n^{2})=lu+mv+nw

Therefore,

k=\dfrac{lu+mv+nw}{l^{2} +m^{2} +n^{2} }

Now,

r^{2}=R^{2}-OC^{2}\\   =(u^2+v^2+w^2-d)-[(kl)^2+(km)^2+(kn)^2]\\\\=(u^2+v^2+w^2-d)-k^2(l^2+m^2+n^2)\\\\=(u^2+v^2+w^2-d)-\dfrac{lu+mv+nw}{l^2+m^2+n^2}(l^2+m^2+n^2) \\implies,\\r^2(l^2+m^2+n^2)=(u^2+v^2+w^2-d)(l^2+m^2+n^2)-(lu+mv+nw)^2\\\\(r^2+d^2)(l^2+m^2+n^2)=(l^2+m^2+n^2)(u^2+v^2+w^2)-(lu+mv+nv)^2\\\\=(mw-nv)^2 +(nu-lw)^2 +(lv-mu)^2

Hence, proved.

Answered by indrakshi64
0

Answer:

Given:

If r is the radius of the circle given by ;

x2 + y2 + z2 + 2ux + 2vy + 2wz + d = 0; lx + my + nz = 0

To prove:

prove that -

(r2 + d2)(l2 + m2 + n2) = (mw − nv)2 + (nu − lw)2 + (lv − mu)2

Solution:

According to question;

The center of the sphere S = 0 is C(-u,-v,-w)C(−u,−v,−w)  and radius

R =\sqrt{(u^{2} + v^{2} + w^{2} -d)}R=(u2+v2+w2−d)

Let O be the center of the circle determined by S = 0 and \pi=0π=0 .

Then CO is perpendicular to the plane \pi=0π=0 .

⇒ d. r of CO are the d. r of the normal to the plane \pi=0π=0

and they are l, m, n.

Therefore the equation of the line CO are

\dfrac{x+u}{l}=\dfrac{y+v}{m}=\dfrac{z+w}{n} .lx+u=my+v=nz+w.

The point O is (kl-u, km-v, kn-w)(kl−u,km−v,kn−w) for some k.

Since, O lies on the plane \piπ ,

\begin{gathered}l((kl-u)+m(km-v)+n(kn-w)=0\\\\implies,\\ k(l^{2}+m^{2}+n^{2})=lu+mv+nw\end{gathered}l((kl−u)+m(km−v)+n(kn−w)=0implies,k(l2+m2+n2)=lu+mv+nw

Therefore,

k=\dfrac{lu+mv+nw}{l^{2} +m^{2} +n^{2} }k=l2+m2+n2lu+mv+nw

Now,

\begin{gathered}r^{2}=R^{2}-OC^{2}\\ =(u^2+v^2+w^2-d)-[(kl)^2+(km)^2+(kn)^2]\\\\=(u^2+v^2+w^2-d)-k^2(l^2+m^2+n^2)\\\\=(u^2+v^2+w^2-d)-\dfrac{lu+mv+nw}{l^2+m^2+n^2}(l^2+m^2+n^2) \\implies,\\r^2(l^2+m^2+n^2)=(u^2+v^2+w^2-d)(l^2+m^2+n^2)-(lu+mv+nw)^2\\\\(r^2+d^2)(l^2+m^2+n^2)=(l^2+m^2+n^2)(u^2+v^2+w^2)-(lu+mv+nv)^2\\\\=(mw-nv)^2 +(nu-lw)^2 +(lv-mu)^2\end{gathered}r2=R2−OC2=(u2+v2+w2−d)−[(kl)2+(km)2+(kn)2]=(u2+v2+w2−d)−k2(l2+m2+n2)=(u2+v2+w2−d)−l2+m2+n2lu+mv+nw(l2+m2+n2)implies,r2(l2+m2+n2)=(u2+v2+w2−d)(l2+m2+n2)−(lu+mv+nw)2(r2+d2)(l2+m2+n2)=(l2+m2+n2)(u2+v2+w2)−(lu+mv+nv)2=(mw−nv)2+(nu−lw)2+(lv−mu)2

Hence, proved.

Similar questions