if R vector = A vector + B vector show that R^2 = A^2+B^2+2AB cos theta
Answers
Answered by
34
According to sum of vectors :
This means that this has to be a triangle with ABR .
We know that the cosine rule states that :
R² = A² + B² - 2 AB cos ( 180° - θ )
⇒ R² = A² + B² - 2 AB cos ( 90° - ( - 90 + θ ) )
⇒ R² = A² + B² - 2 AB ( - sin ( 90 - θ ) )
⇒ R² = A² + B² - 2 AB ( - cos θ )
⇒ R² = A² + B² + 2 AB cos θ
Hence proved !
Explanation :
cos θ is negative in the 2 nd quadrant .
The formula used in trigonometry are :
cos ( 90 - θ ) = sin θ
sin ( 90 - θ ) = cos θ
Cosine rule is :
R² = A² + B² + 2 AB cos θ where θ is the opposite angle of R in a triangle .
Answered by
27
ANSWER:--------------
{ R² = A² + B² - 2 }
[AB cos { 180° - θ )
===>note here ,the follows
===> R² = A² + B² - 2 AB cos ( 90 - !(- 90 + θ )
cøs(9∅!!!!(-90+(∅)
===> R² = A² + B² - 2 AB - sin { 90 - θ }
===> R² = A² + B² - 2 AB - cos θ
===>R² = A² + B² + 2 AB cos θ
proved this problem:-&
hope it helps:--
T!—!ANKS!!!!
{ R² = A² + B² - 2 }
[AB cos { 180° - θ )
===>note here ,the follows
===> R² = A² + B² - 2 AB cos ( 90 - !(- 90 + θ )
cøs(9∅!!!!(-90+(∅)
===> R² = A² + B² - 2 AB - sin { 90 - θ }
===> R² = A² + B² - 2 AB - cos θ
===>R² = A² + B² + 2 AB cos θ
proved this problem:-&
hope it helps:--
T!—!ANKS!!!!
Similar questions