Math, asked by dharmatheja13, 8 months ago

if r1+r2=r3-r then show that angle C is 90°​

Answers

Answered by MaheswariS
11

\textbf{Given:}

\textsf{In triangle ABC}

\mathsf{r_1+r_2=r_3-r}

\textbf{To find:}

\mathsf{\angle{C}=90^\circ}

\textbf{Solution:}

\textbf{Concept used:}

\boxed{\begin{minipage}{8cm}$\mathsf{Area\;of\;triangle\;having\;sides\;a,b,c\,is}\\\mathsf{\triangle=\sqrt{s(s-a)(s-b)(s-c)}\;\;where\;s=\dfrac{a+b+c}{2}}$\end{minipage}}

\textsf{Let a,b,c be the sides of traingle ABC}

\mathsf{Then,}

\mathsf{r=\dfrac{\triangle}{s}}

\mathsf{r_1=\dfrac{\triangle}{s-a}}

\mathsf{r_2=\dfrac{\triangle}{s-b}}

\mathsf{r_3=\dfrac{\triangle}{s-c}}

\mathsf{Consider}

\mathsf{r_1+r_2=r_3-r}

\implies\mathsf{\dfrac{\triangle}{s-a}+\dfrac{\triangle}{s-b}=\dfrac{\triangle}{s-c}-\dfrac{\triangle}{s}}

\implies\mathsf{\dfrac{1}{s-a}+\dfrac{1}{s-b}=\dfrac{1}{s-c}-\dfrac{1}{s}}

\implies\mathsf{\dfrac{(s-b)+(s-a)}{(s-a)(s-b)}=\dfrac{s-(s-c)}{s(s-c)}}

\implies\mathsf{\dfrac{2s-a-b}{(s-a)(s-b)}=\dfrac{c}{s(s-c)}}

\implies\mathsf{\dfrac{(a+b+c)-a-b}{s^2-(a+b)s+ab}=\dfrac{c}{s(s-c)}}

\implies\mathsf{\dfrac{c}{s^2-(a+b)s+ab}=\dfrac{c}{s^2-sc}}

\implies\mathsf{\dfrac{1}{s^2-(a+b)s+ab}=\dfrac{1}{s^2-sc}}

\implies\mathsf{s^2-(a+b)s+ab=s^2-sc}

\implies\mathsf{-(a+b)s+ab=-sc}

\implies\mathsf{ab=(a+b)s-sc}

\implies\mathsf{ab=[(a+b)-c]s}

\implies\mathsf{ab=(a+b-c)\dfrac{(a+b+c)}{2}}

\implies\mathsf{2ab=(a+b)^2-c^2}

\implies\mathsf{2ab=a^2+b^2+2ab-c^2}

\implies\mathsf{0=a^2+b^2-c^2}

\implies\mathsf{a^2+b^2=c^2}

\textsf{Square of one side of triangle ABC is equal to sum of the}

\textsf{sum of the squares of other two sides}

\textsf{By converse of Pythagoras theorem}

\mathsf{\angle{C}=90^{\circ}}

\mathsf{Hence\;proved}

\textbf{Find more:}}

In a triangle ABC,if acosB=bcosA then the triangle is which triangle​

https://brainly.in/question/12199661

Answered by pashikantishivani143
1

Answer:

the answer is given

Attachments:
Similar questions
Math, 11 months ago