If radii of two concentric circles are 3 cm and 4 cm, then find the
length of each chord of one circle which is tangent to the other circle.
Answers
Answered by
2
Answer:
Correct option is
B
6 cm
Given−
TheradiioftwoconcentriccirleswithcentreOare5cm&4cm.
ThechordABofoutercircletouchestheinnercircleatP.
Tofindout−
ThelengthofAB=?.
The radius of a circle is at the right angle at the point of contact of the tangent to the circle with the tangent.
Solution−
ABtouchestheinnercircleatP.
∴AB=2AP,OP⊥AB
⟹ΔAOPisarightangledonewithAOasthehypotenuse.
NowinΔAOPAO=5CM,OP=4cm
∴AP=
AO
2
−AP
2
=
5
2
−4
2
cm=3cm.
∴AB=2AP=2×3cm=6cm
Ans−OptionB
Similar questions