Math, asked by yogitarawat2006, 3 months ago

if radius of a circle is increased by 75% then by what percent will its circumference increase​

Answers

Answered by BrainlyTopper97
111

{\huge{\red{\boxed{\boxed{\boxed{\boxed{\blue{\underline{\green{\mathrm{Answer:}}}}}}}}}}}

The circumference of the circle will increase by 75%.

Step-by-step explanation:

Given :-

  • The percentage of increase in radius of the circle = 75%

To Find :-

  • By what percent the circumference of the circle will increase

Solution :-

Let the initial radius of the circle be x,

New radius (after increment of 75%) = x + (75\% \ of \ x)

                                                              \Longrightarrow x + (\frac{75}{100} \times x)\\\\\Longrightarrow x + \frac{75x}{100}\\\\\Longrightarrow \frac{100x}{100} + \frac{75x}{100}\\\\\Longrightarrow \frac{175x}{100} = \frac{7x}{4}

Formula of Circumference = 2\pi r

Initial Circumference = 2\pi x

New Circumference (after increment in radius) = \dfrac{2\pi \times 7x}{4} = \dfrac{14\pi x}{4} = \dfrac{7\pi x}{2}

Increase in Circumference = New Circumference - Initial Circumference

\Longrightarrow \dfrac{7\pi x}{2} - 2\pi x\\\\\Longrightarrow \dfrac{7\pi x}{2} - \dfrac{4\pi x}{2}\\\\\Longrightarrow \dfrac{3\pi x}{2}\\\\\\{\orange{\boxed{\mathsf{Increase \ in \ circumference = \dfrac{3\pi \it{x}}{2}}}}}

Increase percent in circumference :-

{\huge{\mathsf{\frac{Increase \ in \ Circumference}{Actual \ Circumference}}}} \times 100\%\\\\\\\Longrightarrow \dfrac{\dfrac{3\pi x}{2}}{2\pi x} \times 100\%\\\\\\\Longrightarrow \dfrac{3\pi x}{2} \times \dfrac{1}{2\pi x} \times 100\%\\\\\\\Longrightarrow \dfrac{3\pi x}{4\pi x} \times 100\%\\\\\\\Longrightarrow 0.75 \times 100\%\\\\\\\Longrightarrow 75\%\\\\\\\\{\orange{\boxed{\boxed{\boxed{\boxed{\mathrm{\blue{Increase \ percent \ of \ circumference = 75\%}}}}}}}}

\leadsto {\mathfrak{\blue{Thank \ you}}}


Anonymous: Good
Answered by Anonymous
8

Answer:

#Hope you have satisfied with this answer.

Attachments:
Similar questions