Physics, asked by umamaheswari0819, 6 months ago

if radius vector r=2i+j-k m and force f=i+j+3k n find torque​

Answers

Answered by ryanbhadra1
0

Torque of a Force \vec{F}

F

acting on a point with position vector \vec{r}

r

is given by:

\boxed{\vec{\tau}=\vec{r}\times \vec{F}}

τ

=

r

×

F

So, we can find Torque by finding the cross product of \vec{r}

r

and \vec{F}

F

We have:

\begin{gathered}\vec{r} = 3 \hat{\imath} + 2\hat{\jmath} + 3\hat{k} \, \, m \\ \\ \vec{F} = 2 \hat{\imath} - 3\hat{\jmath} + 4\hat{k} \, \, N\end{gathered}

r

=3

^

+2

^

+3

k

^

m

F

=2

^

−3

^

+4

k

^

N

So, torque will be:

\begin{gathered}\vec{\tau} = |\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 3 & 2 & 3 \\ 2 & -3 & 4 \end{array}| \\ \\ \\ \implies \vec{\tau} = \hat{\imath} ((2)(4)-(-3)(3)) - \hat{\jmath} ((3)(4)-(2)(3)) + \hat{k} ((3)(-3)-(2)(2)) \\ \\ \\ \implies \vec{\tau} = \hat{\imath} (8+9) - \hat{\jmath}(12-6) + \hat{k} (-9-4) \\ \\ \\ \implies \boxed{\vec{\tau}=17\hat{\imath}-6\hat{\jmath}-13\hat{k} \, \, \, N \, m}\end{gathered}

τ

=∣

^

3

2

^

2

−3

k

^

3

4

τ

=

^

((2)(4)−(−3)(3))−

^

((3)(4)−(2)(3))+

k

^

((3)(−3)−(2)(2))

τ

=

^

(8+9)−

^

(12−6)+

k

^

(−9−4)

τ

=17

^

−6

^

−13

k

^

Nm

This is the torque of the force acting about Origin.

Similar questions