Math, asked by abdullahkhan36, 9 months ago

If random variables has Poisson distribution such that p(2) =p(3), then p(5) =​

Answers

Answered by pulakmath007
9

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

POISSON DISTRIBUTION

If X is a Poisson Variate then its Probability Density function is given by

 \displaystyle \sf{ P(r) = \:  {e}^{ - m} \:  \frac{ {m}^{r} }{r \:  !\: } \:   \: } \:  \:

Where m > 0 and r = 0,1,2,3,4,5,........

GIVEN

A random variables has Poisson distribution such that P(2) = P(3)

TO DETERMINE

P (5)

CALCULATION

Here

 \displaystyle \sf{ P(r) = \:  {e}^{ - m} \:  \frac{ {m}^{r} }{r \:  !\: } \:   \: } \:  \:

So

 \displaystyle \sf{ P(2) = \:  {e}^{ - m} \:  \frac{ {m}^{2} }{2 \:  !\: } \:   \: } \:  \:

 \displaystyle \sf{ P(3) = \:  {e}^{ - m} \:  \frac{ {m}^{3} }{3\:  !\: } \:   \: } \:  \:

Now P(2) = P(3) gives

 \displaystyle \sf{  \:  {e}^{ - m} \:  \frac{ {m}^{2} }{2 \:  !\: } \:   = {e}^{ - m} \:  \frac{ {m}^{3} }{3 \:  !\: } \: } \:  \:

 \implies \:  \displaystyle \sf{ \frac{ {m}^{2} }{2 \:  !\: } \:   = \frac{ {m}^{3} }{3 \:  !\: } \: } \:  \:

 \implies \:  \displaystyle \sf{ \: m  = \frac{ 3 \:  !\: }{2 \:  !\: } \: } \:  \:

 \implies \:  \displaystyle \sf{ \: m  = 3 \: } \:  \:

Hence

 \sf{P(5)}

 \displaystyle \sf{= \:  {e}^{ - m} \:  \frac{ {m}^{5} }{5\:  !\: } \:   \: }

 \displaystyle \sf{= \:  {e}^{ - 3} \:  \frac{ {3}^{5} }{5\:  !\: } \:   \: }

 \sf{ = 0.1008}

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

The probability that the root of the equation

x^2+2nx+4n+(5/n) =0 are not real numbers

https://brainly.in/question/20849210

Answered by nilkanthajinkya
0

Answer:

if a random variable has a poisson distribution such that p(2)=p(3)find p(5)

Similar questions