Math, asked by MaNchEstEr0, 11 months ago

If ratio of total surface area of two sphere is 64:81. Then find ratio of their volume.​

Answers

Answered by nidhikumarip9
2

Answer:

512/729

Step-by-step explanation:

total surface area=4"r^3

then, 4"r^2/4"r'^2=64/82

r=8, r'=9

then, volume ratio= 4/3"r^3/4/3"r'^3=r^3/r'^3=

8^3/9^3=512/729

Answered by BrainlyConqueror0901
8

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Volume_{1} : { Volume_{2} }  =512: 729}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies Ratio \: of \: T.S.A\: of \: sphere = 64 : 81 \\  \\  \red{\underline \bold{to \: find :}} \\  \tt:  \implies Ratio \: of \: their \: volume = ?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies T.S.A_{1} : T.S.A_{2} = 64 : 81 \\  \\  \tt:  \implies  \frac{T.S.A_{1}}{T.S.A_{2}}  =  \frac{64}{81}  \\  \\  \tt:  \implies  \frac{4\pi {( r_{1}) }^{2} }{4\pi {( r_{2}) }^{2} }  = \frac{64}{81}   \\  \\  \tt:  \implies  (\frac{ r_{1} }{ r_{2} } )^{2}  =  \frac{64}{81}  \\  \\  \tt:  \implies  \frac{ r_{1} }{ r_{2} }  =   \sqrt{ \frac{64}{81} }  \\  \\ \tt :  \implies  \frac{ r_{1} }{ r_{2} }  =  \frac{8}{9}  \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies  \frac{Volume_{1} }{ Volume_{2} }  =  \frac{ \frac{4}{3} \pi { r_{1}}^{3} }{ \frac{4}{3}\pi { r_{2}}^{3}  }  \\  \\ \tt:  \implies  \frac{Volume_{1} }{ Volume_{2} }  = (\frac{ r_{1} }{ r_{2} } )^{3}  \\  \\ \tt:  \implies  \frac{Volume_{1} }{ Volume_{2} }  = (\frac{8}{9} )^{2}  \\  \\ \tt:  \implies  \frac{Volume_{1} }{ Volume_{2} }  = \frac{512}{729}  \\  \\  \green{\tt:  \implies  {Volume_{1} } : { Volume_{2} }  =512: 729}

Similar questions