if α,β re zeros of quadratic polynomial 2x²+5x+k ,find the value of k such that (α+β)²-αβ=24
Answers
Answered by
127
hi friend,
if α,β re zeros of quadratic polynomial 2x²+5x+k.
α+ß=-5/2
αß=k/2
given,(α+β)²-αβ=24
(-5/2)²-k/2=24
25/4-k/2=24
25-2k=96
2k=25-96
2k=-71
k=-71/2
I hope this will help u ;)
♥dhathri123♥
if α,β re zeros of quadratic polynomial 2x²+5x+k.
α+ß=-5/2
αß=k/2
given,(α+β)²-αβ=24
(-5/2)²-k/2=24
25/4-k/2=24
25-2k=96
2k=25-96
2k=-71
k=-71/2
I hope this will help u ;)
♥dhathri123♥
Answered by
53
HI there !
α,β re zeros of quadratic polynomial 2x²+5x+k.
a = 2
b = 5
c = k
Hence ,
Sum of zeroes = α+ß= - b/a = -5/2
Product of zeroes αß = c/a = k/2
(α+β)²-αβ = 24
(-5/2)²-k/2 =24
25/4 - k/2 =24
25 - 2k= 24 *4
25 - 2k = 96
-2k = 96 - 25
-2k = 71
k = -71/2
Similar questions