Math, asked by priyanshukumar496, 1 year ago

if reciprocal of a number equal to its quadruple what's the number?

Answers

Answered by Anonymous
7
\underline{\mathfrak{Solution :}}

\text{Let the number is \textbf{x},}

\mathsf{ \implies Reciprocal \: of \: \textbf{x} \: = \: \dfrac{1}{x}}

\mathsf{\implies Quadruple \: of \: \textbf{x} \: = \: 4x}

\text{According to question,}

\mathsf{ \implies Reciprocal \: of \: \textbf{x} \: = \: Quadruple \: of \: \textbf{x}}

\mathsf{\implies \dfrac{1}{x} \: = \: 4x} \\ \\<br /><br />\mathsf{\implies 1 \: = \: 4{x}^{2}} \\ \\ \mathsf{ \implies \dfrac{1}{4} \: = \: x^{2} } \\ \\ \mathsf{ \implies x \: = \: \sqrt{ \dfrac{1}{4} } } \\ \\ \mathsf{ \therefore \quad x \: = \: \pm \dfrac{1}{2} }

  \boxed{\mathsf{The \: \: required \: \: no. \: \: is \: \: \pm\dfrac{1}{2}}}<br />
Answered by buntydgeneration
1
this is the answer,
therefore the value of x = +-(1/2)
Attachments:
Similar questions