Math, asked by palakdholakia06, 5 months ago

If Return (R) in Percentage is 1,2,3 with the probability 1/2, 1/3,1/6 respectively. Then Variance Return is​

Answers

Answered by sanjaychauhan7778
0

Step-by-step explanation:

cvvtcfd x rjlalcjsnbsjskskqujshrbtvfefsgvs

Answered by NainaRamroop
0

The Variance of the probability distribution [X; P(X)] 1;1/2, 2;1/3, 3;1/6 is  14/9.

Given:

  • Probability distribution

       X    ;     P(X)

       1     ;      \frac{1}{2}

       2    ;      \frac{1}{3}

       3    ;      \frac{1}{6}

To Find:

The Variance

Solution:

A variance of a dataset describes the spread of all the individual values in the dataset. It can be mathematically summarised as:

  • Var(X) = E(X²) - E(X)² , where

E(X) refers to the Expectation of the data set.

  • In a probability distribution table E(X) of the dataset would be:

E(X) = ∑ XP(X),

summation of the product of the frequency of Event X and Probability of Event X.

Similarly E(X²) = ∑ X²P(X)

So, For finding Var(X)

 ⇒ E(X)² = ∑ XP(X)

               = [ (1 * \frac{1}{2}) + (2 * \frac{1}{3}) + (3 * \frac{1}{6}) ]²

               = ( \frac{1}{2} + \frac{2}{3} + \frac{1}{2}

               = ( \frac{4}{3} )² = \frac{16}{9}

 ⇒ E(X²) = ∑ X²P(X)

               =  (1² *  \frac{1}{2}) + (2² * \frac{1}{3}) + (3² * \frac{1}{6})

               =  (1 *  \frac{1}{2}) + (4 * \frac{1}{3}) + (9 * \frac{1}{6})

               =  ( \frac{1}{2} + \frac{4}{3} + \frac{9}{6} )

               =  ( \frac{10}{3} )

Var(X) = E(X²) - E(X)²

          =  \frac{10}{3} - \frac{16}{9}

          = \frac{14}{9}

Hence, the variance is 14/9.

#SPJ3

Similar questions