Math, asked by sahistajawed, 9 months ago

If right angle triangle is given and it has base 45m and perpendicular distance 9 m than what is the value of third side

Answers

Answered by Anonymous
0

Answer:

45.891m

Step-by-step explanation:

According to Pythagoras Theorem :

 {(perpendicular)}^{2}  +  {(base)}^{2}  =  {(hypotenuse)}^{2}  \\  =  >  {9}^{2}  +  {45}^{2}  = {(hypotenuse)}^{2}  \\  = >  81 + 2025 = {(hypotenuse)}^{2}  \\  =  > 2,106 = {(hypotenuse)}^{2}  \\  =  > hypotenuse =  \sqrt{2106}  \\  =  > hyptenuse = 45.891m

Hope it helps............

\huge\mathfrak{\</em><em>g</em><em>r</em><em>e</em><em>e</em><em>n</em><em>{\fbox{\purple{\bigstar{\mathfrak{\</em><em>o</em><em>r</em><em>a</em><em>n</em><em>g</em><em>e</em><em>{Please\; Follow\;Me}}}}}}}

Answered by Anonymous
4

Answer:

Given:-

  • Base = 45m
  • Perpendicular distance = 9m

To Find:-

  • The Third side (Hypotenuse)

Solution:-

According to Pythagoras theorem:-

 {perpendicular \: distance}^{2}  +  {base}^{2}  =  {hypotenuse}^{2}  \\  \\   \implies {45}^{2}  +  {9}^{2}  =  {hypotenuse}^{2}  \\  \\  \implies \: 2025 + 81 = {hypotenuse}^{2} \\  \\  \implies \: hypotenuse =  \sqrt{2106}  \\  \\  = 45.8

Similar questions