Math, asked by chillpill, 1 year ago

If root 2 =1.414 root 3= 1.732 then find the value of 4/3root3-2root2+3/ 3root three+2root two

Answers

Answered by DaIncredible
9
Hey friend,
Here is the answer you were looking for:

Identity used :

(x + y)(x - y) =  {x}^{2}  -  {y}^{2}

 \frac{4}{3 \sqrt{3}  - 2 \sqrt{2} }  +  \frac{3}{3 \sqrt{3} + 2 \sqrt{2}  }  \\

On rationalizing the denominator we get :
 =  \frac{4}{3 \sqrt{3} -  2\sqrt{2}  }  \times  \frac{3 \sqrt{3} + 2 \sqrt{2}  }{3 \sqrt{3}  + 2 \sqrt{2} }  +  \frac{3}{3 \sqrt{3} + 2 \sqrt{2}  }  \times  \frac{3 \sqrt{3}  - 2 \sqrt{2} }{3 \sqrt{3}  - 2 \sqrt{2} }  \\  \\  =  \frac{4(3 \sqrt{3}  + 2 \sqrt{2} )}{ {(3 \sqrt{3} )}^{2} -  {(2 \sqrt{2} )}^{2}  }  +  \frac{3(3 \sqrt{3}  - 2 \sqrt{2} )}{ {(3 \sqrt{3} )}^{2} -  {(2 \sqrt{2} )}^{2}  }  \\  \\  =  \frac{12 \sqrt{3}  + 8 \sqrt{2} }{27 - 8}  +  \frac{9 \sqrt{3} - 6 \sqrt{2}  }{27 - 8}  \\  \\  =  \frac{12 \sqrt{3} + 8 \sqrt{2}  }{19}  +  \frac{9 \sqrt{3} - 6 \sqrt{2}  }{19}  \\  \\  =  \frac{12 \sqrt{3}  + 8 \sqrt{2} + 9 \sqrt{3} - 6 \sqrt{2}   }{19 }  \\  \\  =  \frac{21 \sqrt{3}  + 2 \sqrt{2} }{19}  \\


Putting the values we get:

 \frac{21 \times 1.732 + 2 \times 1.414}{19}  \\  \\  =  \frac{36.372 + 2.828}{19}  \\  \\  =  \frac{39.2}{19}  \\  \\  = 2.06 \: (approx)


Hope this helps!!

If you have any doubt regarding to my answer, feel free to ask in the comment section or inbox me if needed.

@Mahak24

Thanks...
☺☺

chillpill: thankyou very much Mahak24
DaIncredible: my pleasure
DaIncredible: glad to help
DaIncredible: ^_^
Similar questions