Math, asked by lakshminadiminti0519, 9 months ago

if root 2 and minus root 2 are two zeros of the polynomial x to the power 4 plus x to the power cube minus 14 x to the power square - 2 X + 24 then its other two zeros are​

Answers

Answered by ashishks1912
0

GIVEN :

The roots \sqrt{2} and -\sqrt{2}  are two zeroes of the polynomial x^4+x^3-14 x^2- 2x+24

TO FIND :

The other two zeroes of the given polynomial.

SOLUTION :

Given that the roots \sqrt{2} and -\sqrt{2}  are two zeroes of the polynomial x^4+x^3-14 x^2- 2x+24

Since \sqrt{2} and -\sqrt{2}  are roots , we can write it as,

(x-\sqrt{2})(x+\sqrt{2})=0

(x^2-\sqrt{2}^2=0

x^2-2=0

Hence x^2-2 is the factor of the given polynomial.

                            x^2+x-12

                        _______________________

             x^2-2 )  x^4+x^3-14 x^2- 2x+24

                           x^4-2x^2

                         _(-)__(+)________

                                 x^3-12x^2

                                 x^3-2x^2

                           ___(-)__(+)________

                                     -12x^2+24

                                     -12x^2+24

                                 __(+)____(-)____  

                                                  0

                                      ___________

Hence the quotient is x^2+x-12

x^2+x-12 is the factor of the given polynomial. So we can write it as

x^2+x-12=0

(x+4)(x-3)=0

x+4=0 or x-3=0

∴ x=-4 and  x=3 are the other two zeroes of the given polynomial

Similar questions