Math, asked by ariyanmallick101, 7 months ago

if root 2 is a root of quadratic equation kx^2 +root 2 -4 find the value of k​

Answers

Answered by Anonymous
5

Correct Question:

\sf{If \ \sqrt2 \ is \ a \ root \ of \ quadratic \ equation} \\ \sf{kx^{2}+\sqrt2x-4=0 \ find \ the \ value \ of \ k.}

_______________________________

Answer:

\sf{The \ value \ of \ k \ is \ 1.}

Given:

\sf{The \ given \ quadratic \ equation \ is} \\ \sf{kx^{2}+\sqrt2x-4=0, \ \sqrt2 \ is \ root \ of \ equation.}

To find:

\sf{The \ value \ of \ k.}

Solution:

\sf{\leadsto{kx^{2}+\sqrt2x-4=0}} \\ \\ \sf{Substitute \ x=\sqrt2, \ we \ get} \\ \\ \sf{2k+2-4=0} \\ \\ \sf{\therefore{2k=2}} \\ \\ \sf{\therefore{k=1}} \\ \\ \purple{\tt{\therefore{The \ value \ of \ k \ is \ 1.}}}

_______________________________

Verification:

\sf{\leadsto{kx^{2}+\sqrt2x-4=0}} \\ \\ \sf{Substitute \ k=1, \ we \ get} \\ \\ \sf{x^{2}+\sqrt2x-4=0} \\ \\ \sf{\therefore{x^{2}+2\sqrt2x-\sqrt2x-4=0}} \\ \\ \sf{\therefore{x(x+2\sqrt2x)-\sqrt2(x+2\sqrt2)=0}} \\ \\ \sf{\therefore{(x+2\sqrt2x)(x-\sqrt2)=0}} \\ \\ \sf{\therefore{x=-2\sqrt2 \ or \ \sqrt2}} \\ \\ \sf{Since, \ one \ of \ the \ root \ is \ \sqrt2} \\ \\ \sf{Hence, \ verified.}

Similar questions