Math, asked by Jbhushan899, 11 months ago

If root 3 minus 1 upon root 3 + 1 + root 3 + 1 upon root 3 - 1 = A + root 3 B find the value of a and b

Answers

Answered by DaIncredible
64

Answer:

a = 4 and b = 0

Step-by-step explanation:

 \frac{ \sqrt{3} - 1 }{ \sqrt{3}  + 1}   +  \frac{ \sqrt{3} + 1 }{ \sqrt{3}  - 1}  = a +   \sqrt{3} b \\

Rationalizing the denominators we get:

L.H.S,

 =  \frac{ \sqrt{3} - 1 }{ \sqrt{3}  + 1}   \times  \frac{ \sqrt{3} - 1 }{ \sqrt{3}  - 1}  +  \frac{ \sqrt{3} + 1 }{ \sqrt{3}  - 1}  \times  \frac{ \sqrt{3}  + 1}{ \sqrt{3} + 1 }

 =  \frac{ {( \sqrt{3}) }^{2} +  {(1)}^{2} - 2. \sqrt{3} .1  }{   {( \sqrt{3}) }^{2} -  {(1)}^{2}   }  +   \frac{ {( \sqrt{3} )}^{2} +  {(1)}^{2}   + 2. \sqrt{3} .1}{ {( \sqrt{3} )}^{2}  -  {(1)}^{2} }

 =  \frac{3 + 1 - 2 \sqrt{3} }{3 - 1}  +  \frac{3 + 1 + 2 \sqrt{3} }{3 - 1}  \\  \\  =  \frac{4 - 2 \sqrt{3} }{2}  +  \frac{4 + 2 \sqrt{3} }{2}  \\  \\  = 2 -  \sqrt{3}  + 2 +  \sqrt{3}  \\  \\  = 2 + 2 \\  \\  \bf = 4

Comparing L.H.S and R.H.S we get:

4 = a + b√3

a = 4 and b = 0

Answered by Anonymous
43

Hey there

refer to attachment

Attachments:
Similar questions