If root 3 sin tetha = cos tetha, find the value of 3 cos tetha + 2 cos tetha divide by 3 cos tetha + 2
Answers
Answered by
33
Correct Question:-
If (√3) sin θ = cos θ , find the value of (3 cos² θ + 2 cos θ) ÷ (3 cos θ + 2).
Answer:-
Given:
(√3) sin θ = cos θ
Squaring both sides we get,
(√3)² sin² θ = cos² θ
using the identity sin² θ = 1 - cos² θ we get,
⟶ 3 (1 - cos² θ) = cos² θ
⟶ 3 - 3cos² θ - cos² θ = 0
⟶ - 4cos² θ = - 3
⟶ cos² θ = - 3/ - 4
⟶ cos² θ = 3/4
- cos θ = √3 / 2 [ By applying square root both sides ]
Now,
We have to find:
(3 cos² θ + 2 cos θ) ÷ (3 cos θ + 2)
⟶ [ 3 (3/4) + 2 (√3/2) ] ÷ [ 3(√3/2) + 2 ]
⟶ [ (9/4) + √3 ] ÷ [ (3√3/2) + 2 ]
⟶ ( 9 + 4√3 / 4 ] ÷ ( 3√3 + 4 / 2)
⟶ (9 + 4√3 / 4) * (2 / 3√3 + 4 )
⟶ √3 ( 3√3 + 4) / 2 (3√3 + 4)
⟶ √3/2
∴ The required answer is √3/2.
Similar questions