Math, asked by bittu73312, 7 months ago

if root 3 sin theta - cos theta = 2 then find the value of theta​

Answers

Answered by kv21022005
0

Answer:

The answer is here

Step-by-step explanation:

It is given that \sqrt{3}sin\theta=cos{\theta}

3

sinθ=cosθ

⇒tan{\theta}=\frac{1}{\sqrt{3}}tanθ=

3

1

⇒{\theta}=30^{\circ}θ=30

Thus, the value of the given expression is:

\frac{3cos^2{\theta}+2cos{\theta}}{3cos{\theta}+2}

3cosθ+2

3cos

2

θ+2cosθ

=\frac{3cos^230^{\circ}+2cos30^{\circ}}{3cos30^{\circ}+2}

3cos30

+2

3cos

2

30

+2cos30

=\frac{3(\frac{3}{4})+2(\frac{\sqrt{3}}{2})}{3(\frac{\sqrt{3}}{2})+2}

3(

2

3

)+2

3(

4

3

)+2(

2

3

)

=\frac{9+4\sqrt{3}}{2(3\sqrt{3}+4)}

2(3

3

+4)

9+4

3

which is the required solution.

Answered by Anonymous
2

Step-by-step explanation:

 \sqrt{3}  \sin( \theta)  -  \cos( \theta)  = 2 \\  =  >  \frac{ \sqrt{3} }{2}  \sin( \theta)  -  \frac{1}{2}  \cos( \theta)  =  \frac{2}{2}  \\  =  >  \sin( \theta) \cos(30) -  \cos( \theta) \sin(30)   = 1 \\  =  >  \sin( \theta - 30)  =   \sin(90)   \\  =  >  \theta - 30 = 90 \\  =  >  \theta = 120

Similar questions