if root 3 sin theta - cos theta = 2 then find the value of theta
Answers
Answered by
0
Answer:
The answer is here
Step-by-step explanation:
It is given that \sqrt{3}sin\theta=cos{\theta}
3
sinθ=cosθ
⇒tan{\theta}=\frac{1}{\sqrt{3}}tanθ=
3
1
⇒{\theta}=30^{\circ}θ=30
∘
Thus, the value of the given expression is:
\frac{3cos^2{\theta}+2cos{\theta}}{3cos{\theta}+2}
3cosθ+2
3cos
2
θ+2cosθ
=\frac{3cos^230^{\circ}+2cos30^{\circ}}{3cos30^{\circ}+2}
3cos30
∘
+2
3cos
2
30
∘
+2cos30
∘
=\frac{3(\frac{3}{4})+2(\frac{\sqrt{3}}{2})}{3(\frac{\sqrt{3}}{2})+2}
3(
2
3
)+2
3(
4
3
)+2(
2
3
)
=\frac{9+4\sqrt{3}}{2(3\sqrt{3}+4)}
2(3
3
+4)
9+4
3
which is the required solution.
Answered by
2
Step-by-step explanation:
Similar questions