Math, asked by ashwinbabu176, 1 year ago

If root 3 tanθ = 3sinθ, find the value of sinθ

Answers

Answered by knjroopa
4

Step-by-step explanation:

Given  

If root 3 tanθ = 3 sinθ, find the value of sinθ

  • Given √3 tan θ = 3 sin θ
  •   Now √3 sin θ  / cos θ  = 3 sin θ  
  •    So cos θ  = 1/ √3
  • Squaring both sides we get  
  •  Cos^2 θ = 1/3
  • So 1 – sin ^2 θ  = 1/3
  • Or sin^2 θ  = 1 – 1/3
  • So sin^2 θ  = 2/3
  • So sin θ  = ±√ 2/3
Answered by FelisFelis
3

Answer:

The required value is sin\theta=\pm\sqrt{\frac{2}{3}}

Step-by-step explanation:

Consider the provided trigonometry functions

\sqrt{3} tan\theta = 3 sin\theta

\sqrt{3}( \frac{sin\theta}{cos\theta}) = 3 sin\theta

Divide both sides by ✓3 sinθ

 \frac{1}{cos\theta} = \sqrt{3}

 cos\theta=\frac{1}{\sqrt{3}}

Squaring on both sides:

cos^2\theta=(\frac{1}{\sqrt{3}})^2

cos^2\theta=\frac{1}{3}

Substitute Cos²θ = 1-sin²θ

1-sin^2\theta=\frac{1}{3}

sin^2\theta=1-\frac{1}{3}

sin^2\theta=\frac{2}{3}

sin\theta=\pm\sqrt{\frac{2}{3}}

Hence, the required value is sin\theta=\pm\sqrt{\frac{2}{3}}

Similar questions