if root 3 tan theta =1 find the value of cos2 theta -sin2 theta /2cos theta .sin theta
Answers
Step-by-step explanation:
To find :-
- Value of
Solution :-
Given that,
→ √3 tan ꆪ = 1
→ tan ꆪ = 1/√3
We know,
• Tan ꆪ = Perpendicular/Base
Perpendicular = 1
Base = √3
We need hypotenuse for sin ꆪ
So,
By Pythagoras theorem :
• Hypotenuse² = Perpendicular² + Base²
Put the values :
→ (Hypotenuse)² = (1)² + (√3)²
→ (Hypotenuse)² = 1 + 3
→ (Hypotenuse)² = 4
→ Hypotenuse = √4
→ Hypotenuse = 2
So,
• sin ꆪ = Perpendicular/Hypotenuse
→ sin ꆪ = 1/2
• cos ꆪ = Base/Hypotenuse
→ sin ꆪ = √3/2
Now,
Put values :
Thus,
☆Answer☆
We have,
= √3 tan ꆪ = 1
= tan ꆪ = 1/√3
• Tan ꆪ = P/B
P = 1
B = √3
Now,
By Pythagoras' theorem
• Hypotenuse ² = Perpendicular² + Base²
= (H)² = (1)² + (√3)²
= (H)² = 1 + 3
= (H)² = 4
= H = √4
= Hypotenuse = 2
So,
• sin ꆪ = Perpendicular/Hypotenuse
= sin ꆪ = 1/2
• cos ꆪ = Base/Hypotenuse
= cos ꆪ = √3/2
Now,
(cos²ꆪ - sin²ꆪ)/(2cosꆪsinꆪ)
{(√3/2)²-(1/2)²}/{2×(√3/2)×(1/2)}
On further solving:-
(cos²ꆪ - sin²ꆪ)/(2cosꆪsinꆪ) = 1/√3
✔