If root 3 tan theta = 3 sin theta, then the value of sin² theta - cos² theta
(a) 3
(b) 2/root 3
(c) ⅓
(d) -1
Answers
Answer:
C) 1/3
Step-by-step explanation:
Given,
√3tanA = 3sinA
To Find :-
the values of :-
sin²A - cos²A
Solution :-
√3tanA = 3sinA
√3(sinA/cosA) = 3sinA
√3sinA/3sinA = cosA
1/√3 = cosA
→ cosA = 1/√3
Adj side/hyp side = 1/√3
→ Adj side = 1 , hyp side = √3
→ (hyp side)² = (adj side)²+(opp side)²
(√3)² = (1)²+(opp side)²
→(opp side)² = 2
opp side = √2
→ sinA = opp side/hyp side
= √2/√3
→ sin²A - cos²A
= (√2/√3)² - (1/√3)²
= 2/3 - 1/3
= 1/3
Therefore , sin²A - cos²A = 1/3.
Answer:
c) 1/3
Step-by-step explanation:
Given: √3 tanØ = 3 sinØ
To find: sin²Ø - cos²Ø
Solution:
We know that, secØ = √3 and cosØ = 1/√3
Now,
sin²Ø - cos²Ø = 1 - cos²Ø - cos²Ø
{ As sin²Ø = 1 - cos²Ø}
As cosØ = 1/√3, so cos²Ø = (1/√3)² = 1/3
Substitute the values,
→ 1 - 1/3 - 1/3
→ (3 - 1 - 1)/3
→ 1/3
Hence, the value of sin²Ø - cos²Ø is 1/3.