If root 3 tanA = 3 sinA, then find the value of sin^2A- cos^2A
Answers
Answered by
3
Step-by-step explanation:
3 tan A = 3 sin A
sinA/ cosA = sin A [tan = sin/cos]
cos A= 1
cos A = cos 0
A = 0
sin ^2 A - cos ^2 A = - cos 2A
- cos 2(0)
- cos 0
-1 [ cos 0=1]
Plz follow me
Mark it as Brainliest
Hope it helps, Thanks.
Answered by
5
Answer:
sin^2A-cos^2A=1/3
Step-by-step explanation:
√3tanA=3sinA
√3sinA/cosA= 3sinA
√3cosA=3
1/cosA=3/√3
cosA=√3/3
Now,
sin^2A-cos^2A
1-cos^2A-cos^2A
1-2cos^2A
Now put the value of cos^2A
1-2(√3/3) ^2
1-2*3/9
1-2*1/3
1-2/3
3-2/3=1/3
Similar questions