Math, asked by unzilakhan2003, 4 months ago

If root 3sintheta-costheta=0 and 0° <theta< 90, find the value of theta

Answers

Answered by anindyaadhikari13
3

Required Answer:-

Given:

  • √3 sin(θ) - cos(θ) = 0
  • 0° < θ < 90°

To find:

  • The value of θ

Solution:

Given that,

➡ √3 sin(θ) - cos(θ) = 0

➡ √3 sin(θ) = cos(θ)

➡ sin(θ)/cos(θ) = 1/√3

➡ tan(θ) = 1/√3

From Trigonometry Ratio Table,

➡ tan(θ) = tan(30°)

➡ θ = 30°

Hence, the value of θ is 30°

Answer:

  • θ = 30°

Trigonometry Ratio Table:

\sf Trigonometry\: Value \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle x &amp; \bf{0}^{ \circ} &amp; \bf{30}^{ \circ} &amp; \bf{45}^{ \circ} &amp; \bf{60}^{ \circ} &amp; \bf{90}^{ \circ} \\ \\ \rm sin(x) &amp; 0 &amp; \dfrac{1}{2}&amp; \dfrac{1}{ \sqrt{2} } &amp; \dfrac{ \sqrt{3}}{2} &amp;1 \\ \\ \rm cos(x)&amp; 1 &amp; \dfrac{ \sqrt{3} }{2}&amp; \dfrac{1}{ \sqrt{2} } &amp; \dfrac{1}{2} &amp;0 \\ \\ \rm tan(x) &amp; 0 &amp; \dfrac{1}{ \sqrt{3} }&amp;1 &amp; \sqrt{3} &amp; \rm  \infty  \\ \\ \rm cosec(x) &amp; \rm  \infty  &amp; 2&amp; \sqrt{2} &amp; \dfrac{2}{ \sqrt{3} } &amp;1 \\ \\ \rm sec(x)&amp; 1 &amp; \dfrac{2}{ \sqrt{3} }&amp; \sqrt{2} &amp; 2 &amp; \rm  \infty  \\ \\ \rm cot(x)&amp; \rm  \infty  &amp; \sqrt{3} &amp; 1 &amp; \dfrac{1}{ \sqrt{3} } &amp; 0 \end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}

Relationship between Trigonometric Functions:

  • sin(θ) = 1/cosec(θ)
  • cos(θ) = 1/sec(θ)
  • tan(θ) = 1/cot(θ)
  • sin(θ)/cos(θ) = tan(θ)
Similar questions