Math, asked by jyonukavarapu, 1 year ago

if root 5 equals to 2.236 and root 6 equals to 2.449 find the value of 1 plus root 2/ root 5 plus root 3 plus 1- root2/root 5- root 3

Answers

Answered by rakeshmohata
120
Hope u like my process
=====================
 \frac{ 1 + \sqrt{2} }{ \sqrt{5} +  \sqrt{3}  }  +  \frac{1 -  \sqrt{2} }{ \sqrt{5}  -  \sqrt{3} }  \\  =  \frac{(1 +  \sqrt{2})( \sqrt{5}  -  \sqrt{3}) + (1 -  \sqrt{2} )( \sqrt{5}  +  \sqrt{3}   )}{( \sqrt{5} +  \sqrt{3})( \sqrt{5}   -  \sqrt{3} ) }  \\  =  \frac{ \sqrt{5}  +  \sqrt{10} -  \sqrt{3} -  \sqrt{6} +  \sqrt{5}   -  \sqrt{10}  +  \sqrt{3} -  \sqrt{6}    }{ {( \sqrt{5} )}^{2}  -  {( \sqrt{3}) }^{2} }  \\  =  \frac{2 \sqrt{5 }- 2 \sqrt{6}  }{5 - 3}  =  \frac{2( \sqrt{5}  -  \sqrt{6}) }{2}  \\  =  \sqrt{5}  -  \sqrt{6}  \\  = 2.236 - 2.449 =  - 0.213
Hope this is ur required answer
Proud to help you

rakeshmohata: thnx for the brainliest
Answered by aquialaska
35

Answer:

Value of given expression is -0.213

Step-by-step explanation:

Given: √5 = 2.236 and √6 = 2.446

Consider,

\frac{1+\sqrt{2}}{\sqrt{5}+\sqrt{3}}+\frac{1-\sqrt{2}}{\sqrt{5}-\sqrt{3}}

rationalize the denominator of each term

=\frac{1+\sqrt{2}}{\sqrt{5}+\sqrt{3}}\times\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}-\sqrt{3}}+\frac{1-\sqrt{2}}{\sqrt{5}-\sqrt{3}}\times\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}+\sqrt{3}}

=\frac{(1+\sqrt{2})(\sqrt{5}-\sqrt{3})}{(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})}+\frac{(1-\sqrt{2})(\sqrt{5}+\sqrt{3})}{(\sqrt{5}-\sqrt{3})(\sqrt{5}+\sqrt{3})}

=\frac{\sqrt{5}-\sqrt{3}+\sqrt{10}-\sqrt{6}}{(\sqrt{5})^2-(\sqrt{3})^2}+\frac{\sqrt{5}+\sqrt{3}-\sqrt{10}-\sqrt{6}}{(\sqrt{5})^2-(\sqrt{3})^2}

=\frac{\sqrt{5}-sqrt{3}+\sqrt{10}-\sqrt{6}+\sqrt{5}+\sqrt{3}-\sqrt{10}-\sqrt{6}}{5-3}

=\frac{2\sqrt{5}-2\sqrt{6}}{5-3}

=\sqrt{5}-\sqrt{6}

Now putting given value,

=2.236-2.449

=-0.213

Therefore, Value of given expression is -0.213

Similar questions