Math, asked by wwwdhivyaprabha, 8 months ago

If (root 5 + root 3 i)^33=2^49 z , then modules of the complex number z is equal to . Please give answer with steps

Answers

Answered by pulakmath007
23

SOLUTION :

GIVEN

 \sf{ {( \sqrt{5}  +  \sqrt{3}i) }^{33}  =  {2}^{49}  \: z \: }

TO DETERMINE

The modules of the complex number z i.e | z |

CONCEPT TO BE IMPLEMENTED

PROPERTIES OF COMPLEX NUMBERS

 \sf{1. \:  \:  \: if \:  z = a +ib \:  \: then \:  \:  |z|  =  \sqrt{ {a}^{2} +  {b}^{2}  } \: }

 \sf{2. \:  \:  | {z}^{n} |  =  { |z| }^{n} }

EVALUATION

 \sf{ {( \sqrt{5}  +  \sqrt{3}i) }^{33}  =  {2}^{49}  \: z \: }

Taking modulus in both sides we get

 \implies \sf{  | {( \sqrt{5}  +  \sqrt{3}i) }^{33} |  =   | {2}^{49}  \: z|  \: }

 \implies \sf{   { |( \sqrt{5}  +  \sqrt{3}i)| }^{33} =    {2}^{49}   |z|   \: }

 \implies \sf{   {  \bigg(  \sqrt{ {( \sqrt{5} )}^{2}  +  {( \sqrt{3}) }^{2} }   \bigg) }^{33} =    {2}^{49}   |z|   \: }

 \implies \sf{   {  \bigg(  \sqrt{8}  \bigg) }^{33} =    {2}^{49}   |z|   \: }

 \displaystyle \implies \sf{   {  \bigg( 8\bigg) }^{ \frac{33}{2} } =    {2}^{49}   |z|   \: }

 \displaystyle \implies \sf{   {  \bigg(  {2}^{3} \bigg) }^{ \frac{33}{2} } =    {2}^{49}   |z|   \: }

 \displaystyle \implies \sf{   {  ( {2} )}^{ \frac{99}{2} } =    {2}^{49}   |z|   \: }

 \displaystyle \implies \sf{    |z|   =  {2}^{ (\frac{99}{2}  - 49)}  \: }

 \displaystyle \implies \sf{    |z|   =  {2}^{ \frac{(99 - 98)}{2}  }  \: }

 \implies \displaystyle \sf{    |z|   =  {2}^{ \frac{1}{2}  }  \: }

 \implies \displaystyle \sf{    |z|   =  \sqrt{2} }  \:

RESULT

 \boxed{ \displaystyle \sf{   \:  \:   |z|   =  \sqrt{2} }   \:  \: \: }

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

Show that sinix = isinhx

https://brainly.in/question/11810908

Similar questions