Math, asked by semial5135, 10 months ago

If root 5 + root 3 / root 5 - root 3 = a+b root 15 find a and b where a and b are rational number

Answers

Answered by MisterIncredible
50

Given :-

 \sf \dfrac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{5}  -  \sqrt{3} }  = a + b \sqrt{15}

Required to find :-

  • Values of " a " and " b "

Identities used :-

  • ( x + y ) ( x + y ) = ( x + y )²

  • ( x + y ) ( x - y ) = x² - y²

  • ( x + y )² = x² + 2xy + y²

Solution :-

Given information :-

 \rm \dfrac{ \sqrt{5} +  \sqrt{3}  }{ \sqrt{5}  +  \sqrt{3} } = a + b \sqrt{5}

we need to find the values of ' a ' and ' b '

So,

Consider the LHS part

 \tt \dfrac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{5} -  \sqrt{3}  }

Here,

We need to rationalize the denominator !

So,

Rationalising factor of 5 - 3 = 5 + 3

Hence,

Multiply both numerator and denominator with that factor

So,

 \tt  \dfrac{ \sqrt{5} +  \sqrt{3}  }{ \sqrt{5}  -  \sqrt{3} } \times  \dfrac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{5} + \sqrt{3}  }

Here we need to use some algebraic Identities

They are ,

  • 1. ( x + y ) ( x + y ) = ( x + y )²

  • 2. ( x + y ) ( x - y ) = x² - y²

  • 3. ( x + y )² = x² + 2xy + y²

So,

Using 1 and 2 we get ;

 \rm \dfrac{( \sqrt{5}  +  \sqrt{3}  {)}^{2} }{( \sqrt{5} {)}^{2}  - ( \sqrt{3}  {)}^{2}  }

Using the 3rd identity expand the numerator

 \tt \dfrac{( \sqrt{5}  {)}^{2}  + ( \sqrt{3} {)}^{2} + 2( \sqrt{5}  )( \sqrt{3} ) }{5 - 3}

This implies,

 \tt  \dfrac{5 + 3 + 2 \sqrt{15} }{2}

 \tt \dfrac{ 8 + 2 \sqrt{15}  }{2}  \\   \\ \tt \dfrac{2 \: (  \: 4 +  \sqrt{15} \: ) }{2}

2 gets cancelled in both numerator and denominator

So,

we are left with ;

 \tt 4 +  \sqrt{15}

Now,

Compare the LHS and RHS parts

 \rm 4 +  \sqrt{15}  = a + b \sqrt{15}

From the above comparison we can conclude that the LHS in the form of RHS

So,

Equal the values on both sides

Hence,

a = 4

b = 1

Therefore,

Values of " a " and " b " are 4 & 1

Answered by aayushig216
2

Answer:

HOPE THIS HELP U

Step-by-step explanation:

  • okbH shsjizixn
  • hshsjnd
Attachments:
Similar questions