Math, asked by Tejanshusethi2027, 9 months ago

If root p - root q = 20 then what is the maximum value of (p - 5q)/100

Answers

Answered by codiepienagoya
14

Given:

\bold{\sqrt{p} -\sqrt{q} =20}

To prove:

Find maximum value of =  \frac{p-5q}{100}

Solution:

formula:

(a+b)^{2}= a^2+b^2+2ab

let:

\Rightarrow \sqrt{p} -\sqrt{q} =20

\Rightarrow\sqrt{p} = \sqrt{q} +20 .....(i)

square the above equation:

p= q+400+40\sqrt{q}\\\\

put the above value in to equation:

\bold {\ Equation:}  \\\\ \Rightarrow \frac{p-5q}{100} \\\\ \Rightarrow \frac{q+400+40\sqrt{q} -5q}{100} \\\\ \Rightarrow \frac{400+40\sqrt{q} -4q}{100}

Let the above equation as a method:

\Rightarrow f(x) = \frac{400+40\sqrt{q} -4q}{100} \\\\\ Calculating \ derivative \\\\\Rightarrow f'(x) \ = \frac{20 }{\sqrt{q}} -4} \\\\\Rightarrow f'(x) \ = \sqrt{q} = 5 \\\\

if square the above value q= 25, and put the value of q and √q in method f(x):

 \Rightarrow f(x) = \frac{400+40\times 5 -4 \times 25}{100} \\\\\Rightarrow f(x) = \frac{400+200-100}{100} \\\\\Rightarrow f(x) = \frac{500}{100} \\\\\Rightarrow f(x) = 5 \\\\

The maximum value of (p-5q)/100 is = 5

Similar questions