Math, asked by babatishpa9hif, 1 year ago

if root2=1.414,root3=1.732, then find the value of 4/3root3-2root2+3/3root3+2root2

Answers

Answered by ojasvikamrapaxuyi
25
hope it helps!!

ask if any doubts
Attachments:
Answered by DaIncredible
41
Identity used :

(x + y)(x - y) =  {x}^{2}  -  {y}^{2}

Given,

√2 = 1.414
√3 = 1.732

Now,

 \frac{4}{3 \sqrt{3}  - 2 \sqrt{2} }  +  \frac{3}{3 \sqrt{3}  + 2 \sqrt{2} }  \\

On rationalizing the denominator we get,

 =  \frac{4}{3 \sqrt{3} - 2 \sqrt{2}  }  \times  \frac{3 \sqrt{3} + 2 \sqrt{2}  }{3 \sqrt{3} + 2 \sqrt{2}  }  +  \frac{3}{3 \sqrt{3} + 2 \sqrt{2}  }  \times  \frac{3 \sqrt{3} - 2 \sqrt{2}  }{3 \sqrt{3} - 2 \sqrt{2}  }  \\  \\  =  \frac{4(3 \sqrt{3}  + 2 \sqrt{2}) }{ {(3 \sqrt{3} )}^{2} -  {(2 \sqrt{2} )}^{2}  }   +  \frac{3(3 \sqrt{3} - 2 \sqrt{2}  )}{ {(3 \sqrt{3} })^{2} -  {(2 \sqrt{2}) }^{2}  }  \\  \\  =  \frac{12 \sqrt{3}  + 8 \sqrt{2} }{27 - 8}  +  \frac{9 \sqrt{3} - 6 \sqrt{2}  }{27 - 8}  \\  \\  =  \frac{12 \sqrt{3}  + 8 \sqrt{2} }{19}  +  \frac{9 \sqrt{3}  - 6 \sqrt{2} }{19}  \\  \\  =  \frac{12 \sqrt{3}  + 8 \sqrt{2}  + 9 \sqrt{3} - 6 \sqrt{2}  }{19}  \\  \\  =  \frac{21 \sqrt{3} + 2 \sqrt{2}  }{19}

Putting the values,

 =  \frac{21 \times 1.732 + 2 \times 1.414}{19}  \\  \\  =  \frac{36.372 + 2.828}{19}  \\  \\  =  \frac{39.2}{19}  \\  \\  = 2.06
Similar questions