Math, asked by shubham748, 1 year ago

if root2-1/root2+1=a+b root2 then find the value of a and b

Answers

Answered by DaIncredible
154
Hey friend,
Here is the answer you were looking for:
\frac{ \sqrt{2}  - 1}{ \sqrt{2}  + 1} a + b \sqrt{2}  \\  \\ on \: rationalizing \: the \: denominator \: we \: get \\  \\  =  \frac{ \sqrt{2}  - 1}{ \sqrt{2}  + 1}  \times  \frac{ \sqrt{2}  - 1}{ \sqrt{2} - 1 }  \\  \\ using \: the \: identity \\  {(a - b)}^{2}  =  {a}^{2}  +  {b}^{2}  - 2ab \\ (a + b)(a - b) =  {a}^{2}  -  {b}^{2}  \\  \\  =  \frac{ {( \sqrt{2}) }^{2} +  {(1)}^{2}   - 2 \times  \sqrt{2} \times 1 }{ {( \sqrt{2}) }^{2}  -  {(1)}^{2} }  \\  \\  =  \frac{2 +1  - 2 \sqrt{2} }{2 - 1}  \\  \\   3 - 2 \sqrt{2}  = a + b \sqrt{2}  \\  \\ a = 3 \\  \\ b =  - 2


Hope this helps!!!

@Mahak24

Thanks...
☺☺

shubham748: in question +b root2 hai par tera to - b root2 aya
DaIncredible: nahi
DaIncredible: -2 = b
DaIncredible: sahi hai bhai... Tu bol to moderators ya maths aryabhatta ko bolun check karne
Answered by bhupendravarma2007
5

Step-by-step explanation:

Hey friend,

Here is the answer you were looking for:

\begin{gathered}\frac{ \sqrt{2} - 1}{ \sqrt{2} + 1} a + b \sqrt{2} \\ \\ on \: rationalizing \: the \: denominator \: we \: get \\ \\ = \frac{ \sqrt{2} - 1}{ \sqrt{2} + 1} \times \frac{ \sqrt{2} - 1}{ \sqrt{2} - 1 } \\ \\ using \: the \: identity \\ {(a - b)}^{2} = {a}^{2} + {b}^{2} - 2ab \\ (a + b)(a - b) = {a}^{2} - {b}^{2} \\ \\ = \frac{ {( \sqrt{2}) }^{2} + {(1)}^{2} - 2 \times \sqrt{2} \times 1 }{ {( \sqrt{2}) }^{2} - {(1)}^{2} } \\ \\ = \frac{2 +1 - 2 \sqrt{2} }{2 - 1} \\ \\ 3 - 2 \sqrt{2} = a + b \sqrt{2} \\ \\ a = 3 \\ \\ b = - 2\end{gathered}

2

+1

2

−1

a+b

2

onrationalizingthedenominatorweget

=

2

+1

2

−1

×

2

−1

2

−1

usingtheidentity

(a−b)

2

=a

2

+b

2

−2ab

(a+b)(a−b)=a

2

−b

2

=

(

2

)

2

−(1)

2

(

2

)

2

+(1)

2

−2×

2

×1

=

2−1

2+1−2

2

3−2

2

=a+b

2

a=3

b=−2

Similar questions