if root2-1/root2+1=a+b root2 then find the value of a and b
Answers
Here is the answer you were looking for:
Hope this helps!!!
@Mahak24
Thanks...
☺☺
Step-by-step explanation:
Hey friend,
Here is the answer you were looking for:
\begin{gathered}\frac{ \sqrt{2} - 1}{ \sqrt{2} + 1} a + b \sqrt{2} \\ \\ on \: rationalizing \: the \: denominator \: we \: get \\ \\ = \frac{ \sqrt{2} - 1}{ \sqrt{2} + 1} \times \frac{ \sqrt{2} - 1}{ \sqrt{2} - 1 } \\ \\ using \: the \: identity \\ {(a - b)}^{2} = {a}^{2} + {b}^{2} - 2ab \\ (a + b)(a - b) = {a}^{2} - {b}^{2} \\ \\ = \frac{ {( \sqrt{2}) }^{2} + {(1)}^{2} - 2 \times \sqrt{2} \times 1 }{ {( \sqrt{2}) }^{2} - {(1)}^{2} } \\ \\ = \frac{2 +1 - 2 \sqrt{2} }{2 - 1} \\ \\ 3 - 2 \sqrt{2} = a + b \sqrt{2} \\ \\ a = 3 \\ \\ b = - 2\end{gathered}
2
+1
2
−1
a+b
2
onrationalizingthedenominatorweget
=
2
+1
2
−1
×
2
−1
2
−1
usingtheidentity
(a−b)
2
=a
2
+b
2
−2ab
(a+b)(a−b)=a
2
−b
2
=
(
2
)
2
−(1)
2
(
2
)
2
+(1)
2
−2×
2
×1
=
2−1
2+1−2
2
3−2
2
=a+b
2
a=3
b=−2