Math, asked by Anonymous, 9 months ago

If root3-1/ root3+1 = a+b root2 , find the values a and b

Answers

Answered by RISH4BH
84

\large{\underline{\underline{\red{\sf{ Given:}}}}}

  • \tt{\dfrac{\sqrt{3}-1}{\sqrt{3}+1}=a+b\sqrt{3}(correct)}

\large{\underline{\underline{\red{\sf{To\:Find: }}}}}

  • \tt{Values\:of\:a\:and\:b.}

\large{\underline{\underline{\red{\sf{ Answer:}}}}}

\tt{We\:would\:firsrt\:rationalise\:the\:denominator.}\tt{Then\:we\:will\:compare\:them\:to\:find\:a\:and\:b.}

\purple{\bf{\leadsto Taking\:the\:given\:equ^n:-}}

\green{\tt{\longmapsto \dfrac{\sqrt{3}-1}{\sqrt{3}+1}=a+b\sqrt{3}.}}

\tt{\implies \dfrac{(\sqrt{3}-1)(\sqrt{3}-1)}{(\sqrt{3}+1)(\sqrt{3}-1)}=a+b\sqrt{3}.}

\tt{\implies \dfrac{(\sqrt{3}-1)^2}{(\sqrt{3})^2-(1)^2}=a+b\sqrt{3}.}

\tt{\implies  \dfrac{(\sqrt{3}^2+(1)^2-2\times\sqrt{3}\times1}{3-1}=a+b\sqrt{3}.}

\tt{\implies\dfrac{3+1-2\sqrt{3}}{2}=a+b\sqrt{3} .}

\tt{\implies\dfrac{4-2\sqrt{3}}{2}=a+b\sqrt{3} .}

\tt{\implies 2-\sqrt{3}=a+b\sqrt{3}.}

\underline{\boxed{\purple{\tt{\implies 2+(-\sqrt{3})=a+b\sqrt{3}.}}}}

\blue{\tt{On\:comparing\:L.H.S.\:and\:R.H.S.\:we\:get,}}

  • \pink{\tt{a=2}}
  • \pink{\tt{b=(-1)}}

Similar questions