Math, asked by vu2chs, 10 months ago

if root3+i whole power 100=2 power99(a+ib) then show that a square +b square =4​

Answers

Answered by amarmathbhu28
2

Answer:

Step-by-step explanation: Given

( \sqrt{3} +i)^{100} =2^{99} (a+ib)

(\frac{ \sqrt{3} +i}{2} )^{100} =2^{-1} (a+ib)\\

w^{100} =2^{-1} (a+ib)\\(w^{3} )^{33} w=2^{-1} (a+ib)\\w=2^{-1} (a+ib)\\\frac{\sqrt{3} +i}{2} =2^{-1} (a+ib)\\

\frac{\sqrt{3} -i}{2} =2^{-1} (a-ib)\\

(\frac{\sqrt{3} -i}{2}) (\frac{\sqrt{3}+i}{2})=2^{-1} (a-ib)2^{-1} (a+ib)\\

\frac{3+1}{4} =2^{-2}(a^{2} +b^{2}  )\\a^{2} +b^{2} =4

Similar questions