Math, asked by abhignamobile, 3 months ago

if root3 + root7/ root3 - root7 = a+b root7 find a and b.

Answers

Answered by 12thpáìn
42

\underline{\underline{\boxed{\red{\sf Question}}}}

 \sf \:  \dfrac{3 +   \sqrt{7}  }{3 -  \sqrt{7} }  = a + b \sqrt{7}

\underline{\underline{\boxed{\blue{\sf Answer \ a= 8 b = 3}}}}

\underline{\underline{\boxed{\pink{\sf Step ~by ~step~ explanation }}}}

Given

  • \sf \:  \dfrac{3 +   \sqrt{7}  }{3 -  \sqrt{7} }  = a + b \sqrt{7}

To Find

  • Value of a and b.

Solution

{ \implies\sf \:  \dfrac{3 +   \sqrt{7}  }{3 -  \sqrt{7} }}

\text{\gray{On Rersonalising The Denominator Term}}

{ \implies\sf \:  \dfrac{3 +   \sqrt{7}  }{3 -  \sqrt{7} }} \times \sf \:  \dfrac{3 +   \sqrt{7}  }{3  +   \sqrt{7} }

{ \implies\sf \:  \dfrac{(3 +   \sqrt{7} ) ^{2}  }{3 ^{2}  -  (\sqrt{7} )^{2}  }}

{ \implies\sf \:  \dfrac{9 + 7 + 6 \sqrt{7}    }{9  -  {7}   }}

{ \implies\sf \:  \dfrac{16 + 6 \sqrt{7}    }{2   }}

{ \implies\sf \:  8 + 3  \sqrt{7} }

According To Question

{ \implies\sf \:  8 + 3  \sqrt{7}    = a + b \sqrt{7} }

  •  \sf \: a = 8 \\  \sf \: b = 3
Answered by WaterFairy
87

\huge{\underline{\mathtt{\red{A}\pink{N}\green{S}\blue{W}\purple{E}\orange{R}}}}

Question

\sf \: \dfrac{3 + \sqrt{7} }{3 - \sqrt{7} } = a + b \sqrt{7}

\underline{\underline{\boxed{\blue{\sf Answer \ a= 8 b = 3}}}}

\underline{\underline{\boxed{\pink{\sf Step ~by ~step~ explanation }}}}

Given

\sf \: \dfrac{3 + \sqrt{7} }{3 - \sqrt{7} } = a + b \sqrt{7}

To Find

Value of a and b.

Solution

{ \implies\sf \: \dfrac{3 + \sqrt{7} }{3 - \sqrt{7} }}

\text{\gray{On Rersonalising The Denominator Term}}

{ \implies\sf \: \dfrac{3 + \sqrt{7} }{3 - \sqrt{7} }} \times \sf \: \dfrac{3 + \sqrt{7} }{3 + \sqrt{7} }

{ \implies\sf \: \dfrac{(3 + \sqrt{7} ) ^{2} }{3 ^{2} - (\sqrt{7} )^{2} }}

{ \implies\sf \: \dfrac{9 + 7 + 6 \sqrt{7} }{9 - {7} }}

{ \implies\sf \: \dfrac{16 + 6 \sqrt{7} }{2 }}

{ \implies\sf \: 8 + 3 \sqrt{7} }

According To Question

{ \implies\sf \: 8 + 3 \sqrt{7} = a + b \sqrt{7} }

\begin{gathered} \sf \: a = 8 \\ \sf \: b = 3\end{gathered}

Similar questions