If roots of ax^2+bx+c=0 are alpha and beta then whose equation roots are alpha square and beta square
Answers
Answered by
2
Answer:
a²x²-(b²-2ac)x+c²=0
Step-by-step explanation:
roots of ax^2+bx+c=0 are α and β
So αβ=c/a and α+β=-b/a
The equation with roots α² and β² will be
x²-( α² + β² )x+α²β² =0
x²-{( α + β)² -2αβ}x+(αβ)²=0
x²-{ (-b/a)²-2c/a) }x+ (c/a)²=0
x²- { b²/a²-2c/a)}x +c²/a²=0
x²--( b²-2ac)/a²*x +c²/a²=0
Multiplying by a² we get
a²x²-(b²-2ac)x+c²=0
Similar questions