If roots of equation(a–b)x2 +(b–c)x+(c–a)=0are equal,prove that
2b=a+c.
Answers
Answered by
0
I think you have typed wrong question :
correct question is :
if the roots of the equation (b-c)x² +(c-a)x+(a-b)=0are equal then.Prove that 2b=a+c
your answer is here...
(b-c)x²+(c-a)x+(a-b)=0
Comparing with quadratic equation
Ax²+Bx+C=0
A=(b-c),
B=c-a,
C=a-b
Discriminate when roots are equal
D=B²-4AC=0
D=(c-a)²−4(b-c)(a-b)=0
D=(c²+a²−2ac)-4(ba-ac-b²+bc)=0
D=c²+a²−2ac-4ab+4ac+4b²-4bc=0
c²+a²+2ac-4b(a+c)+4b²=0
(a+c)²-4b(a+c)+4b²=0
[(a+c)-2b]²=0
a+c=2b
MARK BRAINLIEST !!
Similar questions