If roots of quadratic equation real and equal find k k(2x-5)=x^2-4
Answers
Answered by
0
Answer:
Step-by-step explanation:
k²(2x -5 ) = x² -4
2xk²- 5k² = x² - 4
x² -2k²x + 5k²-4 = 0
Compare Ax²+Bx + C =0
A = 1 , B = -2k² , C = 5k²-4
And roots are equal then conditions are
B² - 4AC = 0
(-2k²)² - 4×1×(5k²-4) = 0
4k⁴ - 20k²+16 = 0
K⁴ -5k² +4 = 0
k⁴ -4k²-k² +4 = 0
k²(k²-4) - 1 (k²-4) = 0
(k²-4) (k²-1) = 0
Now, k²-4 = 0 or k²-1 = 0
k² = 4 or k² = 1
k = +2 and -2 or k = +1 and -1
Similar questions