Math, asked by boorabrother736, 1 year ago

if roots of the eq. (a2+b2)×X2-2b(a+c)x+(b2+c2)=0 are equal then find the value of b2

Answers

Answered by Anonymous
23

SOLUTION ☺️

 =  > ( {a}^{2}  +  {b}^{2} ) {x}^{2}  - 2b(a + c)x + ( {b}^{2}  +  {c}^{2} ) = 0 \\  =  > on \: comparing \: with \: a \: general \: quadratic \: equation \\  =  > ax {}^{2}  + b {x} + c = 0 \: we \: get \\  =  > a = ( {a}^{2}  +  {b}^{2} ) \\  =  > b =  - 2b(a + c) \\  =  > c = ( {b}^{2}  +  {c}^{2} ) \\  \\  =  > discriminate =  {b}^{2}  - 4ac \\ as \: the \: roots \: are \: real \: and \: equal \:  \\  =  > therefore \: d = 0 \\  =  > ( - 2b(a + c)) {}^{2}  = 4( {a}^{2}  +  {b}^{2} )( {b}^{2}  +  {c}^{2} ) \\  =  >  {b}^{2} ( {a}^{2}  + 2ac +  {c}^{2} ) =  {a}^{2}  {b}^{2}  +  {a}^{2}  {c}^{2}  +  {b}^{4}  +  {b}^{2}  {c}^{2}  \\  =  > (ac) {}^{2}  - 2(ac)( {b}^{2} ) + ( {b}^{2} ) {}^{2}  = 0 \\  =  > (ac -  {b}^{2} ) {}^{2}  = 0 \\  =  > (ac -  {b}^{2} ) = 0 \\  =  > ac =  {b}^{2}

HOPE it helps ✔️


TyB0T: thanks bud
Answered by Anonymous
3

see the attachment.....

Attachments:
Similar questions