Math, asked by Uriyella, 10 months ago

If roots of the equation (a – b)x^2 + (c – a)x + (b – c) = 0 are equal, then a, b, c are in
A) A.P.
B) H.P.
C) G.P.
D) None of these​

Answers

Answered by AdorableMe
81

Given

Roots of the equation (a - b)x² + (c - a)x + (b - c) = 0 are equal.

To Find

If a, b, c are in

☛ A) A.P.

☛ B) H.P.

☛ C) G.P.

☛ D) None of these​

Solution

(a – b)x² + (c – a)x + (b – c) = 0

• As roots are equal so,

b²  - 4ac = 0

⇒ (c - a)² - 4(a - b)(b - c) = 0

⇒ (c - a)² - 4ab + 4b² + 4ac - 4bc = 0

⇒ (c - a)² + 4ac - 4b(c + a) + 4b² = 0

⇒ (c + a)² - 2.(2b)(c + a) + (2b)² = 0

⇒ [c + a - 2b]² = 0

⇒ c + a - 2b = 0

⇒ c + a = 2b

Hence, a, b & c are in A.P.

____________________

ALTERNATE :-

∵ Sum of coefficients = 0,

Hence one root is 1 and the other root is (b - c) / (a - b).

A/q,

Both the zeros are equal. So,

(b - c) / (a - b) = 1

⇒ b - c = a - b

⇒ 2b = a + c

Hence a, b, c are in A.P.

Therefore, the answer is (A) A.P.


Anonymous: Awesome ! :)
Answered by BrainlyPopularman
75

GIVEN :

Roots of the equation (a – b)x² + (c – a)x + (b – c) = 0 are equal.

TO FIND :

• Relation between a , b , c = ?

SOLUTION :

• If a quadratic equation ax² + bx + c = 0 have equal roots then Discriminant –

   \\  \implies \large { \boxed{ \bold{D = 0}}} \\

• And –

   \\  \implies \large { \boxed{ \bold{D =  {b}^{2} - 4ac }}} \\

• So that –

   \\  \implies \large { \boxed{ \bold{  {b}^{2} - 4ac  =  0}}} \\

• Here –

  \\ \:  \: { \huge{.}}  \:  \:  \:  \: { \bold{a = (a - b)}} \\

  \\ \:  \: { \huge{.}}  \:  \:  \:  \: { \bold{b = (c - a)}} \\

  \\ \:  \: { \huge{.}}  \:  \:  \:  \: { \bold{c = (b - c)}} \\

• So that –

   \\  \implies { \bold{  {(c - a)}^{2} - 4(a - b)(b - c) = 0}} \\

   \\  \implies { \bold{{ {c}^{2} +  {a}^{2} -2 ac=  4(ab - ac -  {b}^{2}  +bc )}}} \\

   \\  \implies { \bold{{ {c}^{2} +  {a}^{2} - 2ac -   4ab  + 4ac   + 4 {b}^{2}   - 4  bc= 0}}} \\

   \\  \implies { \bold{{ {c}^{2} +  {a}^{2} -   4ab  + 2ac   + 4 {b}^{2}   - 4  bc= 0}}} \\

• We should write this as –

   \\  \implies { \bold{ {(a - 2b + c)}^{2} = 0}} \\

   \\  \implies { \bold{ {(a - 2b + c)} = 0}} \\

   \\  \implies { \bold{ a  + c = 2b}} \\

   \\  \implies \large { \boxed{ \bold{b =  \dfrac{a + c}{2} }}} \\

• This condition possible if a , b and c are in A.P.

Hence, Option (A) is correct .


Anonymous: Awesome ! :)
Similar questions